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ABSTRACT 

This thesis proposes a least-squares error estimator for line-of-sight, direction of 

arrival-based localization and a hybrid source localization scheme that addresses 

multipath propagation for non-cooperative sources using random arrays of wireless 

sensors. Taking advantage of the dominant reflections, the proposed solution finds the 

location of a signal source by triangulation using the direction of arrival estimations of 

both the line-of-sight and the reflected components. It uses a space division multiple 

access, spread spectrum-based receiver to generate the direction of arrival estimates. The 

time difference of arrival information is used to discriminate between the line-of-sight 

and the non-line-of-sight signals and to associate the incoming multipath signal with the 

corresponding source and reflector pair. In special cases, the proposed scheme is capable 

of solving the association problem spatially without the need for time difference of 

arrival information. Simulation results are included to demonstrate that the proposed 

scheme provides improved estimates by exploiting the non-line-of-sight information.  
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EXECUTIVE SUMMARY 

A wireless sensor network (WSN) is an autonomous, self-organizing network 

without any pre-established infrastructure or centralized administration. WSNs have been 

used for a wide range of applications where, often, the main goal is to monitor a specified 

phenomenon. One important monitoring task which has recently caught the attention of 

WSN researchers is that of locating a signal source by extracting the information 

contained in the received signal. Two primary approaches to source localization have 

evolved: direction of arrival (DOA) based techniques and time difference of arrival 

(TDOA) based techniques 

This thesis proposes a least squares error estimator for DOA localization which is 

unbiased when the noise is Gaussian-distributed with zero mean. This estimator solves an 

over determined Vandermonde system of equations which is known to be 

computationally efficient and accurate. 

Based on this least squares error estimator, this thesis proposes a passive source 

localization scheme which exploits the non-line-of-sight (NLOS) signals from non-

cooperative sources. The proposed solution is a hybrid DOA/TDOA source localization 

scheme and is comprised of three parts: a DOA estimator, an association algorithm for 

the identified signal bearings, and the source localization scheme itself. The recently 

proposed Space Division Multiple Access (SDMA)-based receiver is used for DOA 

estimation. TDOA information is used to discriminate between the line-of-sight (LOS) 

and the NLOS signals and to associate the incoming multipath signal with the 

corresponding source and reflector pair. In special cases, the proposed scheme is capable 

of solving the association problem spatially without the need for TDOA information. A 

technique is also provided to estimate the position and the orientation of the reflectors 

when site-specific database information is not available. Both centralized and distributed 

variants of the proposed scheme are presented with the latter being of particular interest 

in WSNs. 



 xiv

The proposed localization scheme allows a wireless sensor network to (1) perform 

single array localization, (2) perform the localization in a distributed fashion, (3) obtain 

source location estimates with NLOS signals only and (4) improve the location estimates 

compared with those obtained using the LOS information only. 

A simulation model was developed and implemented in MATLAB to evaluate the 

performance of the proposed localization scheme. The simulation results demonstrate that 

the proposed localization scheme provides high accuracy estimates and outperforms the 

LOS-only based localization schemes. This is primarily because more bearings are 

available and the conditioning of the least squares problem is better for the proposed 

scheme. Furthermore, the simulation results also show that the proposed scheme is able 

to provide accurate NLOS-only source location estimates when the LOS paths are not 

available. 
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I. INTRODUCTION  

A. INTRODUCTION TO PASSIVE SOURCE LOCALIZATION USING 
WIRELESS SENSOR NETWORKS 

A wireless sensor network (WSN) is an autonomous, self-organizing network 

without any pre-established infrastructure or centralized administration [1]. WSNs have 

been used for a wide range of applications where, often, the main goal is to monitor a 

specified phenomenon [2]. Wireless sensor networks offer numerous advantages when 

compared to traditional wired or wireless networks [3]. Of particular interest, WSNs 

provide greater redundancy since the malfunction of a number of sensors has less impact 

on the overall system performance. Additionally, WSNs can be deployed quickly at low 

cost and are well-suited to use in mobile platforms. Not surprisingly, they have found 

wide-spread interest in emergency and military applications. 

One important monitoring task which has recently caught the attention of WSN 

researchers is that of locating a signal source by extracting the information contained in 

the received signal. That source could be an enemy’s radio location, as in military 

applications, or the direction of arrival (DOA) and the location of a sensed phenomenon 

in an emergency situation like the seismic waves which follow an earthquake [3]. A 

WSN performs the source localization by coordinating the effort of individual sensors 

which act as antenna elements. These sensors are clustered together to form antenna 

arrays which fuse the data collected by the sensors, to carry out the localization task [4].  

B. RELATED WORK IN PASSIVE SOURCE LOCALIZATION WITH 
WIRELESS SENSORS NETWORKS 

Passive source localization using wireless sensor arrays is a problem addressed 

extensively in existing literature. Two primary approaches to source localization have 

evolved [5]: direction of arrival (DOA) based techniques and time difference of arrival 

(TDOA) based techniques. DOA-based localization systems utilize antenna arrays which 

examine the spatial characteristics of the incident signals to obtain bearing estimates [11], 

[12], [13], [14], [15] and [16]. The bearing estimates are used for the position location 

determination by triangulation [5] [17], [18] and [19]. TDOA localization systems 
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estimate the source location using the intersection of hyperboloids, which are the set of 

range difference measurements between three or more receiving sensors. These are 

determined by measurement of the TDOA of a signal between the sensors [2], [6], [7], 

[8], [9], and [10]. 

The need for accurate localization requires knowledge of the spatial 

characteristics of the wireless channel since those characteristics significantly affect the 

performance of the arrays. Thus, a significant challenge is the development of realistic 

channel models which can accurately predict the behavior of the wireless medium [30]. 

In a real-world deployment, complex propagation phenomena lead to uncertainty in 

deciding whether a direction of arrival (DOA) corresponds to the line-of-sight (LOS) 

signal or its reflection [2]. That uncertainty can lead to significant errors when estimating 

the position of the desired source. The problem is more severe when a LOS signal does 

not exist as is often the case in urban environments. Additionally, it has been reported 

that a number of strong reflections can be expected even in rural areas [31]. These non-

line-of-sight (NLOS) signals potentially provide additional information that can be 

exploited in the source location.  

There have been several proposals in literature that consider the presence of 

NLOS signals. The first category is comprised of schemes which attempt to mitigate the 

effects of the NLOS signals. In [22], the measurements are weighted to emphasize the 

LOS signals, while [23] identifies the arrays that do not receive LOS signals and excludes 

them from the localization process. In both approaches, the authors seek to minimize the 

impact of the NLOS signals rather than taking advantage of them. Recently, a second 

category of solutions is beginning to emerge that attempts to exploit these NLOS signals. 

The authors of [24] propose a hybrid DOA/TDOA scheme which exploits the NLOS 

when the desired source is cooperative. 

In contrast, this thesis proposes a passive source localization scheme which 

exploits the NLOS signals from non-cooperative sources. It is a DOA/TDOA-based 

scheme which uses bearing estimation for localization through triangulation. The TDOA 

information is used to discriminate between the LOS and the NLOS signals and to 
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associate the incoming multipath signal with the corresponding source and reflector pair. 

Furthermore, using the NLOS information, the proposed scheme is capable of performing 

single array localization. 

C. THESIS OBJECTIVE 

The objective of this research is to develop a source localization scheme that is 

capable of non-cooperative source localization within the constraints of a WSN. The 

existing work on cooperative source localization can then be viewed as a special case of 

this more general solution. 

There are two significant contributions in this work. The first is a proposed least 

squares estimator for DOA-based localization. The second is a passive source localization 

scheme which exploits the NLOS signals from non-cooperative sources. The latter is a 

DOA/TDOA-based scheme which uses bearing estimation for localization through 

triangulation. The TDOA information is used to discriminate between the LOS and the 

NLOS signals and to associate the incoming multipath signal with the corresponding 

source and reflector pair. Furthermore, using the NLOS information, the proposed 

scheme is capable of performing single array localization or NLOS only based 

localization. Both centralized and distributed variants of the proposed scheme are 

presented with the latter being of particular interest in WSNs. 

D. THESIS OUTLINE 

Chapter II provides the background to support the proposed work. It introduces 

the fundamental concepts of antenna arrays including the response of an array with 

randomly distributed elements. An overview of the wireless environment is also included 

to validate the adopted propagation and received signal models. The chapter then outlines 

several current approaches to DOA estimation. The recently proposed Space Division 

Multiple Access (SDMA)-based receiver is presented and compared to the conventional 

MUSIC algorithm. Chapter II closes with a brief discussion of TDOA estimation. 

The significant contributions of this work are presented in Chapter III. Examining 

LOS-only localization first, a least-squares estimator for DOA localization is proposed 

and analysis is provided to investigate the biasing, the impact of errors, and the 
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conditioning of the proposed estimator. A comparison between the least-squares and the 

total-least-squares solutions is also presented. To take advantage of a long duration 

signal, a sequential least-squares approach is also included. Turning our attention to 

NLOS as well as LOS signals, the proposed localization scheme which exploits the 

NLOS signals is then described. The incident signal-source-reflector association 

algorithm is outlined and a technique is provided to estimate the position and the 

orientation of the reflector. Chapter III concludes with the source localization procedure 

of the proposed scheme. 

In Chapter IV, simulation results are provided to evaluate the performance of the 

proposed scheme and compare it to existing LOS-only solutions. 

Chapter V summarizes the significant contributions of this thesis and provides 

some ideas for extending this work in the future. 

Finally, the Appendix includes the MATLAB code used in the simulation. 
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II. BACKGROUND ON SOURCE LOCALIZATION 

This chapter provides the background to support the proposed solution for passive 

source localization of non-cooperative sources using clusters of random or aperiodic 

sensor arrays which form a wireless sensor network (WSN). In this thesis, we consider a 

hierarchical WSN that consists of two levels. The top level is the network of arrays in 

which each array is viewed as a single node. These nodes perform the DOA estimation 

task and the bearings obtained are transmitted to a fusion center, where the localization 

algorithm is executed. In the proposed distributed variant of our solution, each node also 

performs single-array localization. In this case, the source location estimations are then 

simply averaged by the data fusion center. In the second level of the WSN, each array 

contains a number of sensor elements. DOA estimation is conducted at this sensor layer, 

while the source localization is conducted at the array level. An example WSN is shown 

in Figure 1.   

Array 1

Array 2

Array 3

Source  

Figure 1.   Example WSN comprised of 3 arrays, a single source of interest and a 
fusion center. 
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This chapter begins by discussing the array response to an incident signal. An 

overview of the propagation environment follows and a propagation prediction model is 

adopted to provide a realistic scenario for performance comparison of the localization 

schemes. A link budget analysis is then conducted and the signal received by the array is 

computed. Finally, this chapter closes with a discussion of both DOA estimation and 

TDOA estimation. Two methods of DOA estimation are presented, the Multiple Signal 

Classification (MUSIC) DOA estimation method [26] and the new Space Division 

Multiple Access (SDMA) receiver [25]. A comparison of the angle resolution and the 

accuracy of both algorithms is included and the SDMA receiver is chosen as the DOA 

estimation method of the localization process in this thesis. The TDOA estimates will be 

used to associate the multipath components of the received signal with the corresponding 

source and the related reflectors. 

A. ARRAY RESPONSE 

The array steering vector contains the responses of all sensors to a source with a 

single frequency of unit power [26]. The array response varies as a function of direction 

and a steering vector is associated with each direction of interest. The uniqueness of the 

association is defined by the array configuration [27]. In this section, we begin with a 

discussion of linear arrays followed by the more general case of two-dimensional 

aperiodic and random arrays. 

1. Uniform Linear Array (ULA) 

The configuration of a uniform linear array (ULA) is shown in Figure 2. The 

source transmits a narrow band signal ( )s t  of frequency f and is assumed to be in the far 

field. The array consists of N  sensors with uniform inter-element spacing d . With 

respect to the reference node (sensor 1), sensor 2 experiences a time delay of [28] 

 cosd
c
θτΔ =  (1) 

where c is the signal propagation speed. The time delay τΔ  corresponds to a phase shift 

of the signal equal to  
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 cos2 d θψ π
λ

Δ = . (2) 

This phase shift is the same for every pair of sensors because the inter-element spacing is 

constant (uniform). Assuming identical sensor elements, the steering vector of this array 

is given by 

 ( ) ( )11 ... jja e e ψψθ − Ν− Δ− Δ⎡ ⎤= ⎣ ⎦  (3) 

which can in turn be written as 

 ( ) ( )2 2cos 1 cos
1 ...

j d j N d
a e e

π πθ θ
λ λθ

Τ
− − −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (4) 

 

θ {cosd

θ

d0 x

y

2d ( )1N d−

( )s t

sensor 1 sensor 2 sensor N  
Figure 2.   Uniform linear array of N sensors with inter-element spacing d. The 

source is located in the far field. 

2. Two-Dimensional Aperiodic and Random Arrays 

The geometry of a two-dimensional aperiodic array is shown in Figure 3. The 

sensors of the array are placed in the -  planex y  according to some algorithm. Without a  
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loss of generality, the position of the reference sensor is assumed to be at the origin of the 

coordinate system. The phase difference between sensor i  and the reference sensor is 

given as 

 ( )2 cos sini ix yπψ θ θ
λ

Δ = +  (5) 

and thus the corresponding steering vector is found to be  

   

 ( ) ( ) ( )2 2
2 2cos sin cos sin

1 i ij x y j x y
a e e

π πθ θ θ θ
λ λθ

− + − +⎡ ⎤
= ⎢ ⎥
⎣ ⎦

"  (6) 

When the positions of the sensors are chosen by some random process, the aperiodic 

array is known as random array [29]. The steering vector of the random array is identical 

to that of the aperiodic array except that the vector ( ),i ix y� � is a random vector as in 

 ( ) ( ) ( )2 2
2 2cos sin cos sin

1 i ij x y j x y
a e e

π πθ θ θ θ
λ λθ

− + − +⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� � � �
"  (7) 

( ),i i ir x y=

θ

ref. sensor

i sensor

source

x

y

 
Figure 3.   Two-dimensional array geometry. 

This thesis considers aperiodic, random arrays. Aperiodic sensor arrays have 

several advantages when compared to conventional periodic sensor arrays. Due to the 

non-periodic nature of the sensor spacing, they do not suffer from grating lobes in their 
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spectrum and are not limited to a maximum sensor separation of 0.5 λ (0.5 m at 300 

MHz) [29]. This reduces the cost of the construction of such an array, since a smaller 

number of sensors are required. Larger element separation also provides more resilience 

against mutual coupling [29] which occurs between the sensors when one is in the 

vicinity of the other [26]. This coupling effect degrades array performance and is largely 

ignored in most array signal processing literature. Finally, random arrays provide 

flexibility in deployment and can accommodate arbitrary topologies, which are common 

in mobile platforms and WSNs. 

B. SOURCE TO ARRAY 

In this section, we discuss and adopt a radio propagation model of the wireless 

communications channel that will be used in the subsequent performance. Free space 

path loss causes signal strength attenuation of a LOS electromagnetic wave, while with 

NLOS, multipath components can also be attenuated due to reflection, diffraction, and 

scattering [31]. Electromagnetic signals experience attenuation while they travel in space. 

This is the result of spherical energy spread in space. Reflection occurs when a signal 

strikes a surface and is then reflected towards the receiver. Diffraction is the phenomenon 

that occurs when the electromagnetic signal strikes the edge of the corner of a large 

structure compared with the wavelength. Scattering occurs when a signal strikes an object 

that is much smaller compared with the wavelength [32]. These effects lead to complex 

multipath propagation scenarios, especially in areas with a high density of potential 

reflectors and scatterers (e.g., in urban areas). 

1. Propagation Environment 
In this section, we look at signal attenuation in both line-of-sight and reflected 

signals. We present loss expressions for both. 

a. Free Space Loss 
In wireless communications, as the signal propagates through the medium, 

it disperses with distance [33]. This type of attenuation, known as free space loss ( )sL , 

can be expressed as the ratio of the signal power between the transmitter and the receiver 

in dB as 
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( ) ( )4                           10 log 20log 20log 20log 21.98 dB t
s

r

P dL d
P

π λ
λ

⎛ ⎞= = = − + +⎜ ⎟
⎝ ⎠

 (8) 

where tP  is the transmitted signal power, rP is the received signal power, and d is the 

distance between transmitter and receiver. The free space loss is proportional to the 

square of the distance between the transmitter and the receiver. Thus, as this distance is 

increased, the free space attenuation becomes very large. 

b. Reflection 

When a signal propagating in one medium encounters the boundary of 

another medium, it is partially reflected back to the first medium and partially refracted to 

the new medium [21]. The propagation characteristics of the resulting waves are 

governed by the boundary conditions of the interface. 

A schematic representation of the reflection on a smooth surface is shown 

in Figure 4.  The relationships for the angles shown in the figure are given by Snell’s law 

as 

 
    and

sin sin
I R

R r T

θ θ

θ ε θ

=

=
 (9) 

where rε  is the dielectric constant of the material. The attenuation of the reflected signal 

is given by the square of the reflection coefficient as in 2
R IP P= Γ . The reflection 

coefficient, Γ , is a function of the reflected and refracted angles and has a range between 

0 and 1. This coefficient depends on the type of polarization. Thus, for transverse- 

electric (TE) polarized plane, it can be shown to be [21] 

 
cos cos

,
cos cos

R r T

R r T

θ ε θ
θ ε θΕ

−
Γ =

+
 (10) 

while for transverse- magnetic (TM) polarized plane it is [21] 

 
cos cos
cos cos

r R T
H

r R T

ε θ θ
ε θ θ

−
Γ =

+
. (11) 
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For 5rε = , Figure 5.  plots the absolute value of the reflection coefficient 

for both types of polarization as a function of the incident angle. For TM polarization, 

there exists a single incident angle at which 0ΗΓ =  and no reflection occurs. This angle 

is called the Brewster angle and is expressed as [31] 

 ( )
2

1
sin

1
r

r

ε
θ

ε
Β

−
=

−
 . (12) 

On the other hand, when the incident angle is 90D , 1E HΓ = Γ =  and the 

signal is totally reflected for both types of polarization. The path loss because of the 

refection is 

 ( )20logRL = − Γ  (13) 
 

Rθ

Tθ

Iθ

 

Figure 4.   Geometrical representation of the reflection. The incident signal with 
angle θΙ  is partially reflected with angle Rθ  and partially refracted with 

angle Tθ  
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Figure 5.    |Γ| as a function of the incident angle for 5rε = . 

2. Radio Propagation Prediction 

Shifting our attention to the multipath effects, the classic radio propagation 

models provide information about the signal power and Doppler shifts of the received 

signal [30]. However, in source localization schemes, the time delay spread and the 

angle-of-arrival spread are also of major importance. A fundamental challenge in 

localization applications is therefore the development of realistic channel models that can 

accurately predict the characteristics of the multipath propagation. These propagation 

models are highly dependent upon the propagation environment and there does not exist a 

single model that covers every environment. Rather, several empirical models have been 

proposed based on measurements from different areas within the specific environment of 

interest. In general, the characterization of these environments is based upon the 

population density and the building architecture (e.g., urban, suburban, and rural). The 

most challenging propagation environment, particularly for source localization problems, 

is the urban environment where the received signal may be dominated by strong 
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reflections and the LOS path is not always present. A typical propagation scenario can be 

seen in Figure 6 and this thesis primarily focuses on this source localization problem in 

urban environments.  

 

Figure 6.   Typical propagation scenario. A LOS path and several NLOS paths are 
shown. 

a. Site-Specific Propagation Prediction 

Most propagation prediction models for urban areas examine the statistical 

parameters of the propagation environment, such as average row spacing and building 

height distributions [21]. That methodology is suitable when the aim of the model is the 

prediction of the average power of the signal received. However, applicability is limited 

in localization applications where the localization scheme is actively attempting to 

exploit the NLOS components of the signal. 

As an alternative, the site-specific prediction model takes advantage of the 

actual mapping of the area under consideration. The mapping can be exploited by using a 

database which contains the footprints of the buildings and any other large objects [21]. 

Those databases must be, in general, three-dimensional. In the special case when the 

assumption of low antennas in tall building environments holds, the databases can be 
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two-dimensional. This is because, in those cases, the primary propagation paths lie 

around the sides of the buildings and no significant propagation paths exist over the 

rooftops [21]. 

Site-specific propagation models use ray optical methods and treat each 

reflection as an individual ray in the space. The maximum number of reflections along a 

ray path could be anywhere from six to eight and the number of walls in the database on 

the order of thousands [21] — facts which make the prediction a complex procedure. 

Additionally though (theoretically) the total received power is given by the summation of 

the powers of the individual rays; this strategy does not give a very accurate estimate 

because it ignores the scattered signals. Finally, the accuracy of the databases is on the 

order of 0.5 m in the best case [21], which introduces further uncertainty into the 

prediction. 

All of this notwithstanding, a site-specific approach offers a simplifying 

feature when applied to source localization. When a ray path includes many reflections, 

the power delivered by the ray is reduced dramatically due to the attenuation of each 

reflection and the increased path length. In many cases, only the first reflections are 

strong enough to be exploited. Thus, the power of each individual ray is more important 

in the DOA estimation problem than the total received power and ignoring the 

contribution of the weak components can be an advantage. The localization procedure is 

significantly simplified by ignoring the multi-reflected rays, which could not be exploited 

anyway.  

With respect to the size of the reflector, there is a limitation on the size of 

the region over which reflections occur and ray methods can be used. This can be 

understood by looking at Figure 7 in which a ray from the source is reflected by the 

reflector as shown. The length of the reflector surface is Bw , while 2 Fw  is the width of 

the Fresnel zone, defined by the relative geometry between the receiver and the reflector. 

If cos 2B Fw wθ ≥ , then the rules for reflection can be used in order to predict the 

propagation characteristics [21]. However, since { }max 2 Fw Sλ=  where S is the total 

length of the reflected ray in meters, the maximum ray length is then bounded by 
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 ( )21 cosBS w θ
λ

≤ . (14) 

Thus, if 45οθ = , 20 mBw = , and 0.5 mλ = , (14) limits the ray length to 400 m . If the 

above inequality does not hold, then the object acts as a scatterer [34]. 

 

Figure 7.   Fresnel zone and reflector surface characteristics [From 21]. 

b. Scattering Prediction 

The propagation rays, as discussed in the previous section, were 

considered discrete lines in space which possess the total power of the corresponding 

multipath component. However, in reality, the power of the signal is distributed around 

these rays which deteriorate the accuracy of the DOA estimation methods. The 

distribution of the power around the ray is the result of the signal scattering caused by 

small objects found around the source. The same phenomenon is observed around the 

reflections which can be considered secondary sources. Thus, the scatterers are grouped 

into clusters, around both the source and the reflectors. 

Several models have been proposed in literature to predict this scattering. 

The distribution of the angles of arrival caused by the scattering can be modeled as 

discrete Gaussian [30] or discrete Laplacian [35] as in 
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where [ ],θ π π∈ − +  and the mean value of both functions is the angle which corresponds 

to the associated ray. The parameter σ controls the spread of the functions. Typically, σ is 

small and the values of both functions are concentrated around the mean. A plot of the 

function for σ = 3 is shown in Figure 8. Measurements in [36] indicate that the 

distribution of the incident angle fits the discrete Laplacian function better, since in both 

rural and urban environments, they tend to demonstrate a sharp peak while also 

maintaining long tails.  
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Figure 8.   Gaussian versus Laplacian scattering functions. 

3. The Adopted Propagation Model  

In summary, the propagation model used in this thesis combines elements from 

the majority of the models discussed above. In a site-specific propagation model, the 

power attenuation of each ray is calculated as the sum of the path loss and the reflection 

attenuation. The site-specific mapping provides the number of reflectors encountered by 
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the ray en route to its destination and the path loss is computed using the free space path 

loss model for each ray individually. The total power of the received signal is the 

summation of the powers of the individual rays.  

C. RECEIVED SIGNAL 

The received signal model assumes multiple, uncorrelated sources transmitting 

signals to an N-sensor array. In this section, a link budget analysis is performed and the 

received signal-to-noise ratio (SNR) of the incoming signals is computed. Additionally, a 

matrix expression is defined for the received signal as a function of the response of the 

receiving array. 

1. Link Budget Analysis 

The power level of the incident signals is computed by subtracting the losses due 

to attenuation, as described previously, from the transmitted power and by adding the 

gain of the array. The gain of the array is given in dB as [29] 

 ( )10logAR ELG N G= +  (16) 

where ELG  is the gain of each array element in dB. Expression (16) holds for both ULA 

and aperiodic arrays, although in the latter case, it must be considered an approximation 

[37]. The link budget equation in dB for each signal path is then expressed as 

 AR SC S R AR TSNR SNR L L G G= − − + +  (17) 

where ARSNR  is the signal-to-noise ratio available at the receiving array for a specific 

signal path, SCSNR  is the signal-to-noise ratio of the signal transmitted from the 

corresponding source sL is the free space loss, RL  is the path loss because of the 

reflection, TG  is the transmitter gain (assumed to be 0 dB in this work) and ARG  is the 

array gain. The SNR  for signal power P is defined in dB as 
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 SNR 10 log P
kTB

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (18) 

where k is the Boltzmann constant equal to 231.38 10−×  m2 kg s-2 K-1, T is the system 

noise temperature in degrees Kelvin which includes both the antenna and receiver noise 

and B is the effective noise bandwidth of the receiver. 

2. Received Signal Model 

Although the signal of each source is considered narrowband in the previous 

discussion, the results can be extended to wideband signals, given the assumption that the 

frequency response of the array is flat over the signal’s bandwidth and the propagation 

time across the array is small when compared to the inverse of the bandwidth [26]. If the 

number of sources is K and each of them transmits a signal ( )ks t , the received signal at 

time t  in the array can be expressed as 

 ( ) ( ) ( ) ( )
1

K

k k
k

x t a s t n tθ
=

= +∑  (19) 

where  

 ( ) ( ) ( ) ( )1 2 ...  
T N

Nx t x t x t x t= ∈⎡ ⎤⎣ ⎦ ^ , (20) 

( )n t  is the noise vector and ( )ka θ  is the steering vector for signal ( )ks t  with DOA kθ . 

In matrix notation, (20) can be written as  

 ( ) ( ) ( ) ( )x t A s t n tθ= +  (21) 

where ( ) N KA θ ×∈^  is the array response matrix which contains the responses of each 

sensor for each incident signal and is given as 

 ( ) ( ) ( ) ( )1 2 ... kA a a aθ θ θ θ= ⎡ ⎤⎣ ⎦  (22) 

and θ  is a vector which contains the DOA for each incoming signal. Let L  be the 

number of observations with L K> . The received signal can then be written as 
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 ( )X A S N= Θ + , (23) 

where  is the noise matrix and S  is the transmitted signal matrixN L K LN × ×∈ ∈^ ^ . 

D. DOA ESTIMATION 

This section discusses and compares two methods of DOA estimation, the 

Multiple Signal Classification (MUSIC) estimation and the Space Division Multiple 

Access (SDMA) receiver. 

1. The MUSIC Algorithm 

Most DOA algorithms are based on the computation of the signal correlation 

matrix [32]. The received signal correlation matrix xxR  and the desired signal correlation 

matrix ssR  are defined as  

 ( ) ( ){ }H
xxR E x t x t=  (24) 

 ( ) ( ){ }H
ssR E s t s t=  (25) 

where H  denotes the Hermitian transpose of the matrix and { }E a  is the expectation of 

the argument a  [26]. If the statistics of the signal and the noise are not known but the 

corresponding processes are ergodic, then the correlation matrices can be approximated 

by averaging a finite number of data observations as [26] 

 ( ) ( )
1

1ˆ
L

H
xx l l

l
R x t x t

L =

= ∑  (26) 

 ( ) ( )
1

1ˆ
L

H
ss l l

l

R s t s t
L =

= ∑ . (27) 

Both ˆ
ssR and ˆ

xxR are N N× matrices. If additive white Gaussian noise is assumed, the two 

matrices are related as [26] 

 ( ) ( ) 2ˆ ˆ H
xx ss nR A R A Iσ= Θ Θ +  (28) 

where 2
nσ  is the noise variance and I is an N N×  identity matrix. If the incident signals 

are uncorrelated, ssR  is diagonal. When the signals are coherent, ssR  is singular [38]. In 
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most cases, the signals are partially correlated and ssR is positive definite. This property is 

very important, since, as will be shown later, the DOA estimation algorithms are based 

on the inversion of ˆ
ssR . ˆ

xxR  has N  eigenvalues ( )1 2,  ,   ... , Nλ λ λ  and N  associated 

eigenvectors [ ]1 2
ˆ ˆ ˆ ˆ... NE e e e=  which can be obtained by the eigenvalue 

decomposition. By ordering the eigenvalues from larger to smaller, the eigenvector 

matrix can be divided into two sub-matrices [32] 

 ˆ ˆ ˆ
s nE E E⎡ ⎤= ⎣ ⎦ . (29) 

These sub-matrices are also called subspaces. ˆ
sE  has K  columns and corresponds to the 

signal subspace, while ˆ
nE  has N K−  columns and corresponds to the noise subspace. An 

alternate way to find the eigenvectors of the autocorrelation matrix is directly to use the 

received signal matrix X  and eigendecompose it by using the singular value 

decomposition (SVD), which gives more stable algorithms [39]. 

The Multiple Signal Classification (MUSIC) [26] is the most popular among the 

DOA algorithms based in the subspace decomposition of the correlation matrix. The 

desired DOAs are estimated by identifying the peaks of the MUSIC spatial 

pseudospectrum, which is given as [40]  

 ( ) ( )
( ) ( )

H

MUSIC H H
n n

a a
P

a E E a
θ θ

θ θ
= . (30) 

The array steering vectors are orthogonal to the noise subspace and, therefore, the peaks 

in the pseudospectrum represent the DOAs for the desired signal. 

MUSIC can be applied to any arbitrary but known array topology [26] and 

accordingly, requires accurate array calibration [17]. Furthermore, MUSIC assumes the 

number of sources is known in order to assign the corresponding eigenvectors to the 

signal subspace and several algorithms have been proposed to do this [41]. Additionally, 

conventional MUSIC breaks down under near-coherent signal conditions like those 

which exist when multipath propagation conditions are present [32]. Again, several 

methods have been proposed to address this, but they are either applicable only to special 
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cases such as spatial smoothing which works for ULA [17] or they are computationally 

intensive such as multidimensional MUSIC [17]. 

2. The SDMA Receiver 

The SDMA receiver is a new method for DOA estimation proposed in [25]. A 

depiction of this receiver is shown in Figure 9. The SDMA receiver does not rely on the 

subspace decomposition of the correlation matrix, rather it cross-correlates the received 

signal with a pre-computed set of array responses for every direction of interest. 

•
•
•

•
•
•

•
•
•

Σ

VIRTUAL 
 ARRAY

CORRELATOR

( )1s t

( )2s t

( )Ls t ( )Nx t

( )2x t

( )1x t

( )1y t

( )2y t

( )Ny t

Y

• • •

Σ

( )Mv t( )1v t ( )2v t

V

R

( )1w t

( )2w t

( )Nw t
 

Figure 9.   SDMA receiver [From 32]. 

From Figure 9, consider an N sensor array. The output of each array element 

( )nx t  is phase-modulated by a set of uncorrelated spreading sequences ( )nw t . These 

sequences can be any type of pseudorandom [32] or orthogonal [37] sequence. The 

produced array outputs are then orthogonal or nearly orthogonal. In matrix notation, the 

output of the array is found to be 

 HY W X=  (31) 

where X is given from (22) and N LW ×∈^  is the matrix of the spreading sequences 

which is defined as 

 ( ) ( ) ( )1 2 ...
H

NW w t w t w t= ⎡ ⎤⎣ ⎦ . (32) 
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The signals stored in the virtual array are also modulated by the same set of spreading 

sequences. In matrix notation, the output of the virtual array is given as 

 ( )H
MV W A= Θ , (33) 

where ( ) N LA ×
Μ Θ ∈^  is the matrix of the array responses of all sensors for all DOAs. The 

correlator cross-correlates the array signal with that of the output of the virtual array as in 

 HR V Y=  (34) 

where R  is a K L×  matrix. The spatial spectrum of the SDMA receiver is then 

 SDMA kP R=  (35) 

where 

 ( ) ( ) ( )
1 1 1

      1, 2, ... ,
L L L

k
l l l

R R l R l R K l
= = =

= ⎡ ⎤
⎢ ⎥⎣ ⎦
∑ ∑ ∑ . (36) 

The peaks of SDMAP  correspond to the DOAs of the incident signals. 

The array used by the SDMA receiver is preferably a two-dimensional random 

array such that the sensor geometry and element phasing is unique for each DOA [32]. 

The spreading technique used further ensures that all received directions of interest are 

uniquely defined. The receiver does not compute the correlation matrix, but just 

correlates the received signal with a pre-computed one. Thus, in contrast to MUSIC, it 

does not rely on the correlation matrix properties. Also, the SDMA receiver does not 

require knowledge of the number of incident signals. Finally, the SDMA receiver does 

not rely on any complex adaptive or slow iterative methods. It “looks” in pre-determined, 

finite set of directions of interest [32] which, by estimating multiple angles 

simultaneously, translates to an instantaneous search through a bank of a finite number of 

expected observations. 

3. Comparison between SDMA Receivers and MUSIC  

A simulation was conducted using MATLAB and a comparison was made of the 

resolution and the accuracy between the SDMA receiver and the MUSIC algorithm. 

Figure 10 shows the correlation magnitude of SDMA and MUSIC for seven incoming 

signals with angular separations of 20 degrees. A random array of 31 sensors, occupying 
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a 225 m  rectangular area, was used. All the signals had a carrier frequency of 

300 MHz ( 1 mλ = ) with a SNR of 15 dB . The results were averaged across 100 Monte 

Carlo simulations. It is clearly evident that even though the number of signals is large, 

SDMA provides steep lobes in the directions of the incident signals, while MUSIC gives 

main lobes which are difficult to identify. Furthermore, SDMA slightly outperforms 

MUSIC in terms of accuracy as well. Table 1 provides the measured mean value μ  and 

the variance 2σ  in degrees of the average error of two incident angles. Again the results 

were averaged across 100 Monte Carlo simulations. As expected, both schemes provide 

unbiased estimates since the mean values are near zero, but SDMA has a slightly smaller 

variance. 
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Figure 10.   Performance comparison of SDMA and MUSIC for random array of 31 
sensors that covers an area of 225 m . SNR of incident signals is 15 dB . 

 μ  2σ  

MUSIC 0.0917 0.6325 

SDMA -0.015 0.5908 

Table 1.   Error performance of SDMA and MUSIC. 
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Using the MATLAB histfit.m command, the distribution of the error of both 

schemes was compared with the theoretical zero-mean Gaussian distribution. The results 

are shown in Figure 11 for the SDMA receiver and in Figure 12 for the MUSIC 

algorithm. The results from both schemes can be seen to be closely approximated by the 

error distribution which is indicated by the red curve in both Figures 11 and 12. 
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Figure 11.   SDMA error distribution. 
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Figure 12.   MUSIC error distribution. 

 

Finally, Figure 13 shows the performance of the SDMA receiver and MUSIC in 

the case of sparse arrays. The same parameters from Figure 10 were used, except that the 

array area was increased to 22500 m . A significant improvement in the resolution of both 

methods is observed. As discussed earlier, this is an important advantage when using 

random arrays. The larger spacing between the array elements corresponds to a larger 

array aperture, which provides higher angular resolution [42]. In the sparse-array case, 

SDMA is also seen to outperform MUSIC. 
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Figure 13.   Performance comparison of SDMA and MUSIC for a random array of 31 
sensors that covers an area of 22500 m . SNR of incident signals is 15 dB . 

E. TDOA ESTIMATION 

In TDOA-based localization schemes, the first step estimates the time difference 

of arrival (TDOA) of the incident signal between the sensor nodes in the network. TDOA 

information can be obtained by two general methods: the first involves the subtraction of 

the time of arrival between sensors to obtain the relative difference while the second 

method uses cross-correlation techniques to estimate the desired TDOA [17]. The first 

method requires knowledge of the transmission time which, in the case of non-

cooperative sources, is not available. Accordingly, only the cross-correlation method will 

be discussed here. 

Assume that the signal, ( )s t , is transmitted by an unknown source. Each sensor in 

the cluster will receive amplitude-scaled and time-delayed versions of the transmitted 

signal corrupted by the noise introduced in the channel. Hence, the received signals at 

two different sensors, 1( )x t  and 2 ( )x t , are given by 
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( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

 andx t A s t n t

x t A s t n t

τ

τ

= − +

= − +
  (37) 

where 1A  and 2A  are the amplitude scaling factors, 1( )n t  and 2 ( )n t  are the additive 

noise, and 1τ  and 2τ  are the signal offset times at each sensor. 1A  and 2A  reside in the 

interval [ ]0,1 . Assumes that the noise is zero-mean Gaussian and the signal and the noise 

are uncorrelated. Equation (37) can be rewritten in the form 

 
( ) ( ) ( )
( ) ( ) ( )

1 1

2 2

x t s t n t

x t As t n tτ

= +

= − +
 (38) 

where, without loss of generality, it is assumed that the first sensor is the one with the 

smaller time of arrival, the amplitudes are normalized by 1A  and 1τ , again without loss of 

generality, is set to 0. The cross-correlation between the signals 1( )x t  and 2 ( )x t  can be 

approximated by the estimate 

 ( ) ( ) ( )1 2
0

1ˆ
xyR x t x t dtτ τ

Τ

= −
Τ ∫  (39) 

where T is the time interval during which the observation is conducted. The lag, τ , which 

maximizes (38) is the estimate of the TDOA value [43]. 

F. SUMMARY 

This chapter provided the background to support the proposed solution for passive 

source localization of non-cooperative sources. It began by discussing the array response 

to an incident signal. An overview of the propagation environment followed and a 

propagation prediction model was adopted to provide a realistic scenario for performance 

comparison of the localization schemes. It was shown that through a link budget analysis, 

the signal received by the array can be computed. Finally, the chapter concluded with a 

discussion of both DOA and TDOA estimation techniques. 

In the next chapter we propose a least squares estimator for DOA-based 

localization. Based on this estimator we develop a hybrid DOA/TDOA localization 

scheme which exploits both the LOS and the NLOS signals. 
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III. PASSIVE SOURCE LOCALIZATION USING RANDOM 
SENSOR ARRAYS 

In this chapter, we address the problem of passive source localization and present 

the proposed non-cooperative source localization scheme. In the context of random 

arrays, we begin with an analysis of LOS-only DOA-based localization and then move on 

to localization using both LOS and NLOS signals. 

A. LOS-ONLY DOA-BASED LOCALIZATION 

DOA-based localization schemes use DOA estimates of the incident signals to 

obtain bearings to the position of a source of interest. The bearing estimates are used for 

the position location determination by triangulation. In a two-dimensional case, there are 

two unknowns (the coordinates of the source position). In practice, though, more than 

two bearings are required due to finite angular resolution, multipath fading, and noise 

[17]. These bearings form an over-determined system of equations which often do not 

intersect at a single point and can be solved using the least-squares approach. Several 

proposals exist in literature based on the Least Squared Error (LSE) minimization [18], 

[45], while others involve the Minimum Mean Square Error estimation or the Maximum 

Likelihood [46]. 

1. The Geometry of the Problem 

The proposed least squares estimator for DOA localization is based on the 

geometric configuration of Figure 14. Consider K arrays where each array obtains a DOA 

estimate by processing the incoming signal from the source. kθ  is the bearing obtained by 

the array k. We begin by formulating the least squares solution of this problem. 
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Figure 14.   LOS DOA-based source localization using three arrays.  

From Figure 14, 
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which can be rewritten as  

 tan tank k k ky x y xθ θ− = − .  (41) 

Doing this for all the arrays yields, in matrix form, 
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or 

 ( ) ( )A z bθ θ= . (43) 
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2. Least Squares Solution  

The matrix ( )A θ  in (42) and (43) has a specific structure and is referred as a 

Vandermonde matrix. The solution of least squares problems involving such a matrix is 

known to be computationally efficient and accurate [47]. 

a. Least-Squares Estimator 

An estimate of the solution to (42) is obtained by minimizing the 2L -norm 

of the residual [48]  

 ( ) ( )r b A zθ θ= − . (44) 

This is graphically depicted in Figure 15 where y  is the point on the range of A  which 

is closest to b . From the normal equations, the solution to (42) can be obtained as  

 ( ) ( )z A bθ θ+=  (45) 

where ( ) ( ) ( ) ( )1 HHA A A Aθ θ θ θ
−+ ⎡ ⎤= ⎣ ⎦  is the pseudo-inverse matrix. 

y Ax=

r b Ax= −
b

θ

 

Figure 15.   Graphical representation of the least squares problem (From [48]). 
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b. Statistical Analysis of the Least-Squares Estimator 

To show that this estimator is unbiased, let us assume, as discussed 

previously, that the DOA measurements contain a zero-mean Gaussian error δθ such that  

 estθ θ δθ= + . (46) 

Correspondingly, 

 ( ) ( ) ( )estA A Aθ θ δ θ= +  (47) 

and 

 ( ) ( ) ( )estb b bθ θ δ θ= + . (48) 

Taking the derivative of both ( ) ( ) and A bθ θ  from (42), 
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Using the approximations ,  and d b db A dA≈ ≈ ≈δθ θ δ δ , 
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Substituting (47) and (48) into (43) 

 ( ) ( ) ( ) ( )( )T TA A b b A A A A z zδ δ δ δ δ+ + = + + +  (51) 

where zδ  is the error in the source location estimation. Expanding (51) and ignoring the 

second order terms,  
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 T T T T T T TA b A b A b A Az A Az A Az A A zδ δ δ δ δ+ + = + + + . 

Rearranging terms, 

 ( ) ( )( )T T T TA b Az A A b Az A A zδ δ δ δ− + + − = . 

With 0b Az− = , reduces to 

( ) ( )1
.T TA A A b Az zδ δ δ

−
− =  

Using the pseudoinverse we finally arrive at 

 ( )z A b Azδ δ δ+= −  (52) 

which has the expectation 

 { } { }E z A E b Azδ δ δ+= − . (53) 

The vector inside the expectation of (53) is 
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and has a mean value of 
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However, { } ( )0 for every 1,kE k K= ∈δθ  since the DOA error is zero-

mean and, therefore, { } 0E b Az− =δ δ . From (53), it follows that { } 0E z =δ  and the 

proposed estimator is unbiased. 
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The accuracy of the proposed scheme, and of that of any DOA-based 

localization scheme, is affected by the error in DOA estimation. A metric of the accuracy 

of these schemes can be explained in terms of the covariance matrix [49] 

 ( ) 11H
zC A C Aθ

−−=  (56) 

where K KCθ
×∈^  is the covariance matrix of the DOA error estimates (assumed to be 

zero mean white noise sequence in this case). Cθ  is a diagonal matrix and each element 

along the main diagonal represents the error variance of the measured DOA for the 

corresponding array. If the statistics of the error sequence are known and each array has a 

different noise variance, appropriate weighting of the least-squares solution leads to an 

optimum estimator [49]. The weighting matrix is chosen to be the 1Cθ
−

 and the general 

form of the weighted least-squares estimator is 

 ( ) 11 1H H
estx A C A A C bθ θ

−− −= .  (57) 

c. Conditioning of the Least-Squares Solution 

The conditioning of the least-squares problem captures the perturbation 

behavior of the least-squares solution [47]. A least-squares problem is characterized as 

either well-conditioned or ill-conditioned. An ill-conditioned problem is one in which a 

small perturbation in the observed data leads to a large error in the estimated solution and 

the condition number is a metric used to quantify the conditioning. A well-conditioned 

problem has a condition number equal to one. As the condition number increases, the 

problem becomes increasingly ill-conditioned. 

In the least-squares problem of (42), the condition numbers which 

describe the solution z , with respect to the perturbations of the matrix A  and the vector 

b  as shown in Figure 15, are given by the equations of Table 2 [47] where  

 ( ) ( )1

2
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πθ θ−= ≤ ≤ , 
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 ( ) η  ,   0
A z

A
y

η κ= ≤ ≤
  

and 1 2 and σσ  are the maximum and the minimum singular values of A , respectively. 

Here, the rank of the matrix A  is 2 and, therefore, two singular values exist. The 

conditioning of the least-squares problem clearly depends on the geometry of the specific 

scenario under consideration.  

 Condition number 

b  ( )
cos

Aκ
η θ

 

A  
( ) ( )2 tanA
A

κ θ
κ

η
+  

Table 2.   Condition numbers of the least-squares problem [From 47]. 

d. Geometric Dilution of Precision 

The geometry formed by the arrays which participate in the localization 

procedure and the source of interest affects the accuracy of the estimated source position 

[5]. As the distance between the source and the baseline increases relative to the length of 

the baseline, the accuracy of the least-squares solution decreases. This is because larger 

relative distances correspond to smaller differences in bearings at the arrays. Thus, 

relatively large source distances increase the condition number of matrix A  and tend to 

make it singular. This, in turn, affects the stability of the least-squares problem. This 

phenomenon is called geometric dilution of precision and is illustrated in Figure 16. As 

the relative distance of the source from the baseline is increased, the uncertainty area, 

formed by the intersections of the estimated bearings is also increased. Furthermore, the 

angle between the orthogonal bisection of the baseline and the bearing to the source from 

the midpoint of the baseline also affects the accuracy of the solution. As illustrated in 

Figure 17, as angle BSθ  increases, the uncertainty area becomes larger. 
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Figure 16.   The effect of distance to the source on the geometric dilution of the 
precision. 
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Figure 17.   The effect of the bearing to the source on geometric dilution of the 
precision. 
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3. Total Least Squares 

In the proposed least squares estimator, both A and b  can be affected by errors. 

For a least-squares problem, the total least squares (TLS) method is known to compensate 

for errors in matrix A [49]. Let C A b⎡ ⎤= ⎣ ⎦  with 3kC ×∈^  . The singular value 

decomposition of matrix C is 

 HC U V= Σ  (58) 

where 3 3 3 3 3,   and kU V× × ×∈ Σ∈ ∈^ \ ^ . Matrices and U V  are unitary and Σ  is a 

diagonal matrix of the form 
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σ

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (59) 

where its diagonal elements are the singular values of C , satisfying 1 2 3C C Cσ σ σ≥ ≥ . 

The TLS solution of the least-squares problem using the total least-squares estimator can 

then be shown to be [49] 

 ( ) 1

3
H H

TLS Cx A A A bσ
−

= − Ι . (60) 

A simulation was conducted in MATLAB to compare the performance of the 

proposed model using both the LS and the TLS methods. The DOA estimation error was 

assumed to be zero-mean Gaussian with a standard deviation of 0.5 degrees. The results 

are shown in Figure 18 as a function of the number of sensor arrays. The LS solution can 

be seen to outperform the TLS solution for small numbers of arrays, while the TLS 

solution is slightly better for 10 arrays or more.  
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Figure 18.   RMS error for LS vs. TLS for 1000 Monte Carlo simulations with 
0.5DOAσ = ° . 

These results are surprising and contradict existing literature. As mentioned in 

[49], the TLS is a deregularizing procedure. The conditioning of the TLS problem should 

always be worse than the conditioning of the respective LS problem. The ratio of the 

smallest singular value of A to the smallest singular value of C has been defined as a 

metric to quantify the instability of the TLS and to indicate whether the LS outperforms 

the TLS [49]. As this ratio, 2

3

A

C

σ
σ

 in this case, approaches unity, the TLS tends to be 

unstable and the LS solution performs better. This ratio was computed for the simulation 

of Figure 18 and is shown in Table 3. The results can be seen to agree with the 

performance of the TLS algorithm. 

Arrays 3 4 5 6 7 8 9 10 11 

2

3

A

C

σ
σ

 
5.4513 5.4934 6.3222 6.9740 7.8332 8.9594 9.9635 11.0359 12.0155 

Table 3.   Stability measure for the TLS algorithm. 
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4. Sequential Least Squares 

As time progresses, more incoming signal samples may arrive at the array from 

the same source. Hence, more data will be available and, by exploiting it, the estimate of 

the source location can be improved. In this case the localization procedure becomes a 

dynamic task and an algorithm which continuously updates the information matrices is 

needed [48]. If the noise is uncorrelated (which implies that the covariance matrix Cθ  is 

diagonal), then A  can be computed sequentially as  

 [ ] [ ]
[ ]

1
H

A k
A k

a k
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

 (61) 

where [ ]A k  is the data matrix of k measurements, [ ]1A k −  is the 2k×  matrix of the 

previous 1k −  measurements and [ ]Ha k  is the kth measurement. Recall that 

[ ] [ ]1 tanH
ka k θ=  for the proposed scheme. Thus, the sequential estimator is [48] 

 [ ] [ ] [ ] [ ]( )1 [ ] [ 1]Hz k z k D k b k a k z k= − + − −  (62) 

where 

 [ ] [ ] [ ]
[ ] [ ] [ ]2

1
1H

k

C k a k
D k

a k C k a k
θ

θσ
−

=
+ −

 (63) 

and the covariance update is given as 

 [ ] [ ] [ ]( ) [ ]1HC k I D k a k C kθ θ= − − . (64) 

B. LOS AND NLOS DOA-BASED LOCALIZATION 

The proposed hybrid DOA/TDOA LOS and NLOS localization scheme is 

implemented in three steps. A block diagram of the proposed scheme is shown in Figure 

19. The first step implements the DOA estimation using the SDMA receiver as described 

in the previous chapter. A detailed description of steps 2 and 3 (bearing association and 

source localization, respectively) are included in the following subsections. 
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Figure 19.   Block diagram of the proposed LOS and NLOS localization scheme. 

1. Association of Bearings 

Once the DOAs have been determined for the incident signals, they are then 

associated with each other according to source-reflector pairs. Specifically, for each 

source-reflector pair, a LOS and a NLOS is identified based on knowledge of the 

reflector position and geometry. This reflector knowledge can be obtained either from 

static databases which contain the footprint of the large objects within the environment 

under consideration [21] or dynamically by sending a beacon from a known location and 

using the reflector position estimation algorithm which is described in the following 

subsection. When neither of these tools is available, the proposed scheme is capable of 

performing reflector position estimation. In this case, the problem becomes one in which 

the scheme simultaneously performs both reflector mapping and source localization. In 

the remainder of this section, we begin with a discussion of how this reflector mapping is 

accomplished and then present the association scheme. 

a. Reflector Position Estimation 

To discuss the reflector mapping algorithm, consider Figure 20 where a 

single source transmits a narrowband signal and N reflectors generate NLOS signals that 

can be viewed as secondary sources. A minimum of three arrays must be available to 

solve the reflector estimation problem. Let ,i nθ  be the bearing associated with array i and 
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reflector n and ,i sθ  the LOS bearing from source S to array i. The bearing 

correspondences can be illustrated with a ( )4,3 3N N+ + -bipartite graph as shown in 

Figure 21. There are 4N +  vertices in the graph and 3 3N +  edges. The number of edges 

corresponds to the total number of bearings. The interrelationship between the bearings is 

determined in two steps as shown in Figure 22. In the first step, all the intersections 

between the bearings of array 1 and array 2 are found. In this step, a total of ( )21N +  

2 2×  systems of equations are solved. In step two, the residuals between those points and 

the bearings of array 3 are computed. The 1N +  smaller residuals indicate which 

intersections of array 1 and array 2 bearings correspond to which bearing of array 3. This 

second step involves the solution of ( )31N +  equations. Thus, the total number of 

required operations grows as 3N . The source and the image sources related to the 

reflectors are estimated by solving for the interrelated bearings using the least squares 

estimator of the proposed scheme. The orientation and the position of reflector n  

according to Figure 20 is then given as 
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with 
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Figure 20.   Unknown reflector position and orientation estimation with three arrays. 
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Figure 21.   Representation with a ( )4,3 3Ν + Ν +  biparte graph of the bearing 
correspondences of the reflector source pairs for N reflectors. 
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Figure 22.   Two-step procedure for finding the bearing correspondences of the 
reflector source pairs 

b. Bearing Association using Expected TDOA Estimation 

Once the positions of the reflectors have been determined, each array can 

associate its bearings using a set of time markers. From Figure 23 and using the sinusoids 

law, 

 
( ) ( ) ( )sin sin 2 sin 2 2

INC LOSREF

R L R L o R o

d dd
θ θ θ θ θ θ θ

= =
− + − −

. (67)  

where 'AAd is the distance between the array and its image (with respect to the reflector), 

oθ  is the orientation of the reflector, Lθ  is the LOS bearing and Rθ  is the NLOS bearing. 

However,  

 LOS INC REFd d d dΔ = − −  (68) 

and, combining (67) and (68),  
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We also note that 
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τ
θ θ

Δ
= Δ =

−
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where c is the propagation speed and τΔ is the desired expected TDOA between the LOS 

and the NLOS signals. Substituting (69) into (70) the expression for τΔ  is 
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where 
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 (72) 

The TDOAs for all combinations of ordered pairs of bearings are solved 

using (71) for each reflector to give the complete set of possible expected TDOAs which 

can be shown to number  

 ( ) ( ) ( )2 3 2 212 2
2

M NN M N N N M N N
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+
= + + − +  (73) 

TDOAs where M is the number of transmitting sources. It should be emphasized that this 

set is derived using the DOA estimations from the first step of the proposed scheme. 

The set of expected TDOAs is compared with the observed TDOAs, 

which have been calculated from the time markers using a weighted version of the 

generalized cross correlation estimator. For a given source, the bearing association is then 

accomplished by matching ordered pairs of the expected TDOAs to the observed 

TDOAs. 
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Figure 23.   Single-array, single-source, single-reflector scenario used to illustrate the 
expected TDOA relationship between the LOS and the NLOS signal. 

c. Spatial Bearing Association 

As depicted in Figure 24, when a single source is considered and the exact 

footprint of the reflectors is known, the association problem can be solved spatially 

without the need of TDOA estimation. This saves processing load which is desirable in 

wireless sensor network applications. For the single reflector scenario, two cases can be 

identified. In the first, one bearing is outside of the sector defined between the reflector 

and the array as in Figure 24(a). This bearing can be clearly identified as the LOS signal. 

In the second case, both bearings reside inside the sector as in Figure 24(b). In this case, 

the localization problem (discussed in the next section) is solved twice for each of the 

potential LOS bearings. These solutions will generate two distinct points. One is the 

position of the source while the second is an image of the source related to the specific 

reflector. The latter point can be readily determined to be unrealistic based on the known 

location of the reflector and the former is identified as the actual position of the source. 



 46

 

                                             (a)                                           (b) 

Figure 24.   Spatial bearing association when one source transmits and the exact 
footprint of the reflector is known. 

When multiple reflectors are considered, each one defines an independent 

sector and, in the case where a sector contains two bearings, the association can be solved 

as above. When each sector contains at most one bearing, then the least squares 

localization problem described in the next section is solved as many times as the number 

of the bearings by considering a different bearing as the LOS each time. The least squares 

formulation, which converges to a solution, simultaneously solves both the association 

problem and the localization problem. If no solution results from the procedure, then no 

LOS signal exists and the localization problem is solved by considering all bearings as 

NLOS. 

In the preceding discussion, it is assumed that all reflections are “single 

bounce.” This is a reasonable assumption provided a signal strength threshold is used at 

each receiver.  
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2. Localization using both LOS and NLOS Signals 

The third step in the proposed scheme is the source localization algorithm itself. 

In this section, we begin by describing the single array case and then expand the 

localization procedure to the multiple arrays case. For the latter, we propose both 

centralized and distributed solutions. 

a. Single Array Localization 

As we have noted earlier, the proposed scheme is capable of providing 

single array localization. As shown in Figure 25, if at least one NLOS bearing is 

available, the source position is found as the intersection of the LOS bearing and the 

bearing with angle 2 o Rθ θ−  with respect to the image array. This image array is defined 

in a similar manner to the image source described earlier and its position is given by 

 '
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We also note that 
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Combining (75) and (76), we see that 
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Substituting (77) and (78) into (74), we have 
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Using (42), the least squares formulation of the single array localization problem when a 

single NLOS signal exists in conjunction with the LOS signal is  

 ( )
1 tan

, 1 tan 2
L

o R
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θ
θ θ
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When the reflections of at least two reflectors are present the localization 

task can be performed by using only the NLOS signals. Considering the scenario of 

Figure 25, matrix A  and the corresponding vector b  in (42) become 
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Figure 25.   Single-array NLOS-only localization with two reflectors. 

 

b. Proposed Multiple-Array Centralized Localization Scheme 

Consider the multiple array-multiple reflector scenario of Figure 26 in 

which K arrays have available the NLOS reflections from N reflectors. This problem is 

over-determined and can be solved using the least-squares estimator proposed earlier. 

The formulation of the matrix A  and the corresponding vector b  is  
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where ( )1 2N
kA + ×∈^  is the matrix of data obtained by the thk  array and 1N

kb +∈^  is the 

corresponding vector. These can be shown to be 
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Figure 26.   Single-source localization using multiple arrays in the presence of 
multiple reflectors. 

This localization scheme is a centralized scheme which involves a data 

fusion center to process the incoming data collected by the arrays. In a WSN, the fusion 

center may be an array of sensors as well. The centralized approach has several 

fundamental drawbacks when implemented in WSNs. The most important is the 
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increased energy consumption of the fusion center. Thus, the array assigned to act as the 

fusion center will have a shorter lifetime due to the added processing and communication 

load which will affect the lifetime of the entire WSN. 

c. Proposed Multiple-Array Distributed Localization Scheme  

As an alternative to the centralized approach above, a distributed solution 

can be implemented that solves the localization problem for each single array 

individually and then averages the individual array estimates. A two-step approach, this 

solution is summarized in Figure 27. This distributed approach is of particular interest in 

wireless sensor network deployments since it distributes the processing load among 

multiple sensor nodes and reduces the communication burden which is the primary 

energy consumer [2]. 
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Figure 27.   Proposed distributed localization scheme. 

C. SUMMARY 

In this chapter, we proposed a least squares estimator for DOA-based localization 

which is unbiased when the noise is Gaussian-distributed with zero mean. This estimator 

solves an over determined Vandermonde system of equations which is known to be 

computationally efficient and accurate. 

Based on this least squares error estimator, we proposed a passive source 

localization scheme which exploits the NLOS signals from non-cooperative sources. The 

proposed solution is a hybrid DOA/TDOA source localization scheme and is comprised 

of three parts: a DOA estimator, an association algorithm for the identified signal 

bearings, and the source localization scheme itself. The recently proposed Space Division 
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Multiple Access (SDMA)-based receiver was used for DOA estimation. TDOA 

information was used to discriminate between the line-of-sight (LOS) and the NLOS 

signals and to associate the incoming multipath signal with the corresponding source and 

reflector pair. It was shown that, in special cases, the proposed scheme is capable of 

solving the association problem spatially without the need for TDOA information. A 

technique was also provided to estimate the position and the orientation of the reflectors 

when site-specific database information is not available. Both centralized and distributed 

variants of the proposed scheme were presented with the latter being of particular interest 

in WSNs. 

In the next chapter, we evaluate the performance of the proposed passive source 

localization scheme using MATLAB. 
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IV. SIMULATION RESULTS OF THE PROPOSED 
LOCALIZATION SCHEME 

In this chapter, simulation results are provided to validate the performance of the 

proposed localization scheme. We begin with a discussion of the MATLAB simulation 

code, the supporting link budget analysis, and the performance metrics. Following this, 

simulation results are provided and analyzed for both the single reflector and the multiple 

reflector cases. 

A. SET-UP OF THE SIMULATION 

The performance of the proposed localization scheme is validated using the 

MATLAB simulation environment. Details of the underlying simulation are provided in 

the following subsections. 

1. Matlab Simulation  

The MATLAB code used in this thesis is included in the Appendix and is 

implemented in three steps according to the block diagram of Figure 19.  The operational 

scenario simulated in MATLAB contains one source and two reflectors with a 

narrowband signal is transmitted at a given SNR from the source. The propagation 

environment is modeled as discussed in Chapter II and a link budget analysis is 

conducted. The incident signal at the arrays is processed and the response of each array is 

given by the function resignal.m. The SDMA receiver is simulated with the MATLAB 

function doa_sdma.m. Once the DOA estimations have been determined, the simulation 

associates the reflector-source bearing pairs and performs the localization. Finally, the 

MATLAB code simulates and compares the LOS-only localization scheme and the 

proposed localization scheme which utilizes both LOS and NLOS signals. 

2. Environment Simulation and Link Budget Analysis 

Using the scenario shown in Figure 28, we now provide an example link budget 

analysis. This single-source, single-reflector example can be expanded to scenarios with 

multiple reflectors or sources. The source transmits a narrowband signal with 30 kHz 
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bandwidth at a carrier frequency of 300 MHz . The signal is received at the array via two 

multipath components. The first path is the LOS, while the second is a “single bounce” 

NLOS signal. The power of the transmitted signal is 0.1 mW . The source is located at 

coordinates ( ) ( ),   170 m,230 mS Sx y = , while the array is at the origin. The reflector has 

orientation 1θ  = 10o with respect to the x -axis. The reference point Ry  is located at 

( )0 m,400 m . The angle 45Lθ = °  corresponds to the DOA of the LOS path, while 

79.48Rθ = °  is the DOA of the reflection. The length of the LOS path is 282.84 m , while 

the length of the NLOS path is 667.08 m . Each individual array contains 50 sensors 

randomly distributed in an area of size 15 m 15 m× .  

Assuming a system temperature of 400 K, the transmitted signal SNR is equal 

to117.81 dB . The received SNRs for the LOS and the NLOS components are 64.93 dB  

and 49.24 dB , respectively. The NLOS path is weaker than the LOS path by 15.69 dB . 

As expected, this is the result of a longer propagation path combined with the reflection 

loss.  

1Rθ θ−
1

Rθ
θ−

12R Lθ θ θ+ −

Rθ
Lθ

1θoRy

x

y

Array  

Figure 28.   Single-source, single-reflector scenario used in the reported link budget 
analysis. 
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3. Performance Metrics 

We model three uncertainties in the simulation scenarios. The first is introduced 

by the noise of the received signal which is considered zero-mean Gaussian. A second is 

generated by the uncertainty in the position of the sensors within the arrays. Finally, the 

different arrays are randomly distributed in the specified area. To capture the 

performance of our proposed scheme, we define a metric based on an estimation r  of the 

distance of the source from the array r  and given as  

 2 2      (RMS error)r r rγ σ μ= +  (85) 

where 
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and P is the number of Monte Carlo simulations. 

B. SIMULATION RESULTS OF THE PROPOSED LOCALIZATION 
SCHEME 

In this section, simulation results are provided to evaluate the performance of the 

proposed scheme. In the first subsection, we examine the case of a single-source, single-

reflector. In the second subsection, we extend this to multiple reflectors. 

In the following discussion, the term known reflector implies that the knowledge 

was obtained from existing databases or by a beacon, while the term unknown reflector 

means that the position of the reflector was estimated as described in Chapter III. The 

mapping of the reflector is not free of errors. A standard deviation of 0.25 m was used for 

the position of the known reflector. This value was chosen to agree with the observations 

of [21]. 

1. Single Source-single Reflectors 

In the first scenario, a single reflector provides strong multipath components and a 

single transmitting source with position ( ) ( ), 170 m,230 mS Sx y =  exists in the field. The 
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reflector has orientation 1θ  = 10o with respect to the x -axis. The reference point of the 

reflector is yR, located at ( )0,400 m . The WSN covers a square area of 45 m 45 m×  

centered at the origin. The general layout of scenario 1 is shown in Figure 29.  Seventy 

five Monte Carlo simulations were conducted and a comparison was made between the 

proposed scheme which exploits the NLOS signals and the LOS-only-based scheme. 

Each array was comprised of 50 sensor elements randomly distributed in an area of 
2225 m . 

X
(m)

y
(m)

( ) ( ), 170, 230s sx y =

1 10θ =400 Roy =

WSN

Reflector

Source

45m 45m×  

Figure 29.   Scenario 1: Single source located at ( )170 m,230 m . Single reflector with 

orientation 1 10oθ =  and reference point at 1 400 mRy = . Variable number 
of arrays randomly distributed in a 22025 m  area. 

The proposed localization scheme outperforms the LOS-only based localization 

as shown in Figure 30.  This is because more bearings are available to the proposed 

scheme to formulate the position estimate. Additionally, the condition number of matrix 

A  was found to be smaller for the proposed scheme as shown in Table 4. The signals 
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from a common source (i.e., actual source or reflector) will tend to be clustered in a 

realistic wireless sensor network scenario since the relative distance to the source of 

interest is typically large when compared with the spacing between neighboring arrays. 

However, the angle separation between those clusters is also relatively large. This is why 

the least squares problem for the proposed scheme is well conditioned compared with the 

LOS-only localization scheme 
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Figure 30.   Scenario 1: RMS error for both the proposed scheme (LOS and NLOS 
signals) and the LOS-only based localization scheme in the presence of 

known reflectors.  

Array 3 4 5 6 7 
( )1k A  57.8158 30.3956 26.7982 25.3431 24.4903 

2( )k A  2.5343 2.543 1.7376 1.6736 1.7588 
 

Table 4.   Scenario 1: Condition numbers as a function of the number of arrays for 
the LOS-only localization ( )1A  and the proposed localization scheme ( )2A , 

respectively. 
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The effect of the conditioning of the least squares problem for both the LOS-only 

and the proposed LOS-NLOS localization schemes is shown in Figure 31 where the RMS 

error is presented as a function of the distance between the source and the WSN. Three 

arrays of 30 sensors each were used. The proposed LOS-NLOS scheme provides accurate 

source position estimates when the distance is large while the LOS-only scheme is 

numerically unstable and inaccurate. We found that in many of the Monte Carlo 

simulations the LS problem of the LOS-only scheme is ill conditioned for source-array 

distances larger than 600 meters. 
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Figure 31.   Scenario 1: RMS error as a function of the distance of the source from the 

arrays for both the proposed scheme (LOS and NLOS signals) and the 
LOS-only based localization scheme in the presence of known reflectors  

A comparison between the centralized and the distributed localization scheme is 

shown in Figure 32.  Both implementations perform similarly well, but in this particular 

example, the distributed approach is seen to be slightly more accurate. Additionally, for 

the reasons discussed earlier, the distributed approach is the more suitable approach for a 

WSN. 
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Figure 32.   Scenario 1: RMS error for both the centralized and the distributed 

configuration of the proposed  

The accuracy of the proposed localization scheme is reduced when the reflector 

position and orientation is unknown. Figure 33.  compares the accuracy of the proposed 

scheme for both known and unknown reflectors with the LOS-only based localization 

scheme. An iterative approach, which updates the estimated reflector position, improves 

the accuracy of the proposed scheme. Figure 34 presents this improvement for the 

proposed localization scheme as a function of the number of iterations when the 

sequential LS approach is used for five arrays.  
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Figure 33.   Scenario 1: RMS error for the proposed localization scheme using known 
and unknown reflectors and the LOS-only based localization scheme. 
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Figure 34.   Scenario 1: RMS error as a function of the number of iterations for the 

proposed localization scheme with an unknown reflector using the 
sequential LS approach with five arrays. 
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As discussed earlier,  matrix A  of the least squares problem includes errors. Thus, 

the proposed localization scheme was also implemented using the TLS solution. This 

TLS solution outperforms the LS solution as shown in Figure 35.  This is in contrast with 

what was found for the LOS–only based localization scheme in Chapter III and is the 

result of the well-conditioned nature of the proposed scheme. However, the improved 

location accuracy is achieved at the expense of the larger processing load required by the 

singular value decomposition which makes it difficult to deploy in a WSN.  
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Figure 35.   Scenario 1: RMS error for the proposed localization scheme using least 

squares solution and the total least squares solution. 

2. Single Source-multiple Reflectors 

The second scenario examines the accuracy of the proposed scheme when two 

reflectors are present. The geometric configuration is shown in Figure 36 and is the same 

as in scenario 1, except that an additional reflector exists with orientation 2 10oθ = and at 

reference point 
2

300 mRy = − . Again 75 Monte Carlo simulations were conducted and a 

comparison was made between the proposed scheme which exploits the NLOS signals 

and the LOS-only-based scheme. Each array was comprised of 50 sensor elements 

randomly distributed in an area of 2225 m . 
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( ) ( ), 170 m,230 ms sx y =1 10θ = °
1
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Reflector 22
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Figure 36.   Scenario 2: Single source located at ( )170 m,230 m . Two reflectors, both 

with orientation 10oθ =  and reference point 
at 1 2400 m and 300 m respectively.R Ry y= = −  A variable number of arrays 

were randomly distributed in a 22025 m  square area. 

The proposed localization scheme outperforms the LOS-only based localization 

as shown in Figure 37 when the reflectors are known. Furthermore, when analyzing a 

LOS-based scheme, one must consider the case in which the scheme incorrectly identifies 

a NLOS signal to be LOS. As shown in Figure 38, this misidentification causes the LOS-

only approach to completely break down and return erroneous results. In contrast, the 

proposed scheme, by design, effectively associates the incoming signals.  
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Figure 37.   Scenario 2: RMS error for both the proposed scheme (LOS and NLOS 
signals) and the LOS-only based localization scheme in the presence of 

one and two known reflectors  
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Figure 38.   Scenario 2: RMS error for both the proposed scheme (LOS and NLOS 
signals) and the LOS-only based localization scheme when the latter takes 

one NLOS signal as the LOS signal.  
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The proposed localization scheme can also be used for NLOS-only localization. 

As shown in Figure 39, these estimates are significantly improved when more than one 

reflector is present (as is typically the case in a realistic scenario). This is also due to the 

clustered nature of the bearings, as discussed earlier, which affect the conditioning of the 

least squares problem. The condition numbers of the A matrix as a function of the 

number of arrays for NLOS-only localization in the presence of one and 2 reflectors are 

shown in Table 5. 
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Figure 39.   Scenario 2: RMS error for the NLOS-only localization of the proposed 
localization scheme in the presence of one and two known reflectors.  

 
Array 3 4 5 6 7 
( )3k A  147.7123 98.8117 84.1275 76.5002 75.3193 

4( )k A  3.7182 3.7283 3.7319 3.7366 3.7435 

Table 5.   Condition numbers as a function of the number of arrays for the NLOS-
only localization of the proposed localization scheme in the presence of one 

reflector ( )1A  and two reflectors ( )2A , respectively. 
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C. SUMMARY 

In this chapter, simulation results were provided to validate the performance of 

the proposed localization scheme. We began with a discussion of the MATLAB 

simulation code and the performance metrics. Following this, simulation results were 

provided and analyzed for both the single reflector and the multiple reflector cases. 
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V. CONCLUSION 

This thesis proposed a least squares error estimator. Based on the proposed 

estimator, this thesis developed a passive source localization scheme which exploits the 

NLOS signals from non-cooperative sources. The proposed solution is a hybrid 

DOA/TDOA source localization scheme and is comprised of three parts: a DOA 

estimator, an association algorithm for the identified signal bearings, and the source 

localization scheme itself. This scheme allows a wireless sensor network to (1) perform 

single array localization, (2) perform the localization in a distributed fashion, (3) obtain 

source location estimates with NLOS signals only and (4) improve the location estimates 

compared with those obtained using the LOS information only. The proposed solution 

requires the knowledge of the position of potential reflectors which can be obtained 

dynamically using the included reflector mapping algorithm. A reflector knowledge 

updating procedure based on the sequential least squares was used when the reflectors 

were unknown and the accuracy of the proposed scheme was further improved. 

Simulation results were provided to demonstrate the effectiveness of the proposed 

scheme and the conditioning of the least squares problem associated with it and compare 

it to existing solutions. 

A. SIGNIFICANT CONTRIBUTIONS 

There are two significant contributions in this thesis. The first is a least squares 

error estimator for DOA localization which is unbiased when the noise is Gaussian-

distributed with zero mean. This estimator solves an over determined Vandermonde 

system of equations which is known to be computationally efficient and accurate. 

The second significant contribution of this thesis is a passive source localization 

scheme which exploits the NLOS signals from non-cooperative sources. The simulation 

results showed that the proposed localization scheme provided high accuracy estimates 

and outperformed the LOS-only based localization schemes. This is because more 

bearings are available and the conditioning of the least squares problem is better for the 

proposed scheme  
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B. FUTURE WORK 

Throughout this thesis, it has been assumed that the positions of the sensors are 

known without errors. The presence of errors affects the accuracy of the DOA 

estimations and in turn the accuracy of the proposed localization scheme. A future effort 

may examine methods to reduce the impact of those errors. 

This thesis did not address initial signal of interest (SOI) detection. Since the SOI 

SNR at the receiving sensor network is dependent to a large degree on the characteristics 

of the non-cooperative emitter, future work could include a study of SOI detection, and 

subsequent localization, as a function of received SNR. 

This thesis assumed stationary sources and arrays. This assumption can be 

extended to include platforms that are moving at low speeds. A future effort could also 

examine the performance of the proposed scheme in tracking applications. 

A signal power threshold was used to ensure that all reflections are “single 

bounce.” Future work may solve the association problem of multiple-hop reflections and 

exploit the information contained in those reflections. 

Finally, an analysis which compares the computational cost of both the 

centralized and the distributed configurations of the proposed localization scheme may be 

a subject for a future work. 
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APPENDIX  

This is the Matlab code used in this thesis to evaluate the performance of the 

proposed source localization scheme in the presence of one or two reflectors. 

 
%THESIS MATLAB CODE 
%Created by Georgios Tsivgoulis 
  
  
clear; clc; clf reset; 
  
%% TRANSMITTED SIGNAL 
  
f=3E8;                                   % freq of baseband modulation 
TB=1/(4*f);                              % time bandwidth product = 4 
Nchips=64;                               % Number of Chips / Time seq 
SPC = 16;                                % Samples Per Chip  
cp=3E8;                                  % speed of light 
lambda = cp/f;                           % c/f 
k = 2*pi/lambda;                         % wavenumber 
tend=SPC*Nchips;                         % time snapshot end 
t=[0:(tend-1)]*TB/(tend-1);              % discritization of signal 
s=sin(2*pi*f*t); 
S=zeros(1,length(t));                    %incident signal 
S(1,:) =S(1,:)+exp(1j*(s)); 
  
%Signal SNR 
P=10^-4;                                 % signal power (watt) 
K=1.38*10^-23;                           % Boltzman constant 
Tk=400;                                  % system temperature 
B=3E4;                                   % signal bandwidth 
SNR=10*log10(P/(K*Tk*B))                 % signal SNR 
  
%% TARGET POSITION-REFLECTOR SIMULATION 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Simulation of the source and the arrays 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
tic 
Xt=170; Yt=230;                           % targets position 
stdev=0.25;                               % reflector position 
deviation 
T=[Xt Yt]; 
Rt=sqrt(T(1)^2+T(2)^2);                   % source distance   
tho1=10*pi/180;                           % reflector 1 orientation 
YRo1=400;                                 % reflector 1 reference point 
tho2=-5*pi/180;                           % reflector 2 orientation 
YRo2=-300;                                % reflector 2 reference point     
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c=input('give the number of clusters-receivers:')   
array_size=input('give the size of the array:')  
N=input('give the number of sensors/cluster:')  
nruns=input('give the number of Monte carlo estimates:') 
% array position 
 Xs=zeros(1,c);Ys=zeros(1,c); 
%for i=1:(c-1)/2; 
%Ys(2*i)=15*i;  
%Xs(2*i+1)=15*i; 
%end 
  
for run=1:nruns;              % Monte carlo simulation begin  from here 
    fprintf('run:%2.0f\n',run); 
   YRo1=YRo1+stdev*randn; 
    YRo2=YRo2+stdev*randn; 
for i=1:c; 
    Ys(i)=45*rand; 
    Xs(i)=45*rand;  
tan_thL=(Yt-Ys(i))/(Xt-Xs(i)); 
thL=atan(tan_thL);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Simulation of the reflector 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%REFLECTOR1 
XRs1=(1/(1+tan(tho1)^2))*Xs(i)+(tan(tho1)/(1+tan(tho1)^2))*(Ys(i)-
YRo1); 
YRs1=tan(tho1)*XRs1+YRo1; 
Xsim1=2*XRs1-Xs(i); 
Ysim1=2*YRs1-Ys(i); 
thA1=2*tho1+atan((Ysim1-T(2))/(T(1)-Xsim1)); %DOA  REF actual #1 
XR11=50; YR11=tan(tho1)*XR11+YRo1; 
XR12=200; YR12=tan(tho1)*XR12+YRo1; 
th11=atan((YR11-Ys(i))/(XR11-Xs(i)))+5*pi/180; 
th12=atan((YR12-Ys(i))/(XR12-Xs(i)))-3*pi/180; 
  
%REFLECTOR2 
XRs2=(1/(1+tan(tho2)^2))*Xs(i)+(tan(tho2)/(1+tan(tho2)^2))*(Ys(i)-
YRo2); 
YRs2=tan(tho2)*XRs2+YRo2; 
Xsim2=2*XRs2-Xs(i); 
Ysim2=2*YRs2-Ys(i); 
thA2=2*tho2+atan((Ysim2-T(2))/(T(1)-Xsim2)); %DOA  REF actual #2 
XR21=50; YR21=tan(tho2)*XR21+YRo2; 
XR22=200; YR22=tan(tho2)*XR22+YRo2; 
th21=atan((YR21-Ys(i))/(XR21-Xs(i)))-5*pi/180; 
th22=atan((YR22-Ys(i))/(XR22-Xs(i)))+3*pi/180; 
  
%% RECEIVED SIGNAL 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Signal strength simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Array Gain 
GA=10*log10(N)+2;               %Assume dipole antenna elements 
  
%Free space path loss 
dL=sqrt((Xt-Xs(i))^2+(Yt-Ys(i))^2); 
LSL=-20*log10(lambda)+20*log10(dL)+21.98; 
dA1=sqrt((Xt-Xsim1)^2+(Yt-Ysim1)^2); 
LSA1=-20*log10(lambda)+20*log10(dA1)+21.98; 
dA2=sqrt((Xt-Xsim2)^2+(Yt-Ysim2)^2); 
LSA2=-20*log10(lambda)+20*log10(dA2)+21.98; 
  
%Reflection loss 
thT1=asin(sin(pi/2-thA1)/sqrt(5)); 
Href1=(cos(pi/2-thA1)-sqrt(5)*cos(thT1))/(cos(pi/2-
thA1)+sqrt(5)*cos(thT1)); 
Lref1=20*log10(abs(Href1)); 
  
thT2=asin(sin(pi/2+thA2)/sqrt(5)); 
Href2=(cos(pi/2+thA2)-
sqrt(5)*cos(thT2))/(cos(pi/2+thA2)+sqrt(5)*cos(thT2)); 
Lref2=20*log10(abs(Href2)); 
  
%Received SNR 
SNRL=SNR-LSL+GA;  
SNRA1=SNR-LSA1+Lref1+GA; 
SNRA2=SNR-LSA2+Lref2+GA; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Received Signal simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[B1,B2,B3,B] =resignal(thL,thA1,thA2,N,array_size,k); 
XL=B1*S; %Received signal  
XL=awgn(XL,SNRL,'measured'); 
XA1=B2*S; %Received signal  
XA1=awgn(XA1,SNRA1,'measured'); 
XA2=B3*S; %Received signal  
XA2=awgn(XA2,SNRA2,'measured'); 
X=XA1+XA2+XL; 
  
%% DOA ESTIMATION 
thESTsdma=doa_sdma(X,B,N); 
%thESTsdma2=doa_sdma(XA1,B,N); 
%thESTsdma3=doa_sdma(XA2,B,N); 
%thESTsdma=[thESTsdma1;thESTsdma2;thESTsdma3]; 
  
%% BEARING ASSOCIATION 
%LOS=find(thESTsdma>th11 | thESTsdma<th12 |thESTsdma>th21 | 
thESTsdma>th22 ); 
REF1=find(thESTsdma<th11 & thESTsdma>th12); 
REF2=find(thESTsdma>th21 & thESTsdma<th22); 
LOS=find(thESTsdma<th12&thESTsdma>th22); 
thLest(i)=thESTsdma(LOS); 
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thAest1(i)=thESTsdma(REF1); 
thAest2(i)=thESTsdma(REF2); 
end 
  
%% LOCALIZATION 
  
%%%%%%%%%%%%%%%%%%% 
%Matrix Formulation 
%%%%%%%%%%%%%%%%%%% 
for j=3:c; 
    for i=1:j 
A(i,:)=[1 -tan(thLest(i))]; 
A(i+j,:)=[1 -tan(2*tho1-thAest1(i))]; 
A(i+2*j,:)=[1 -tan(2*tho2-thAest2(i))]; 
b(i,1)=Ys(i)-tan(thLest(i))*Xs(i); 
b(i+j,1)= Ysim1-tan(2*tho1-thAest1(i))*Xsim1; 
b(i+2*j,1)= Ysim2-tan(2*tho2-thAest2(i))*Xsim2; 
  
%Matrix formulation for image pointS 
Aref1(i,:)=[1 -tan(thAest1(i))]; 
bref1(i,1)=Ys(i)-tan(thAest1(i))*Xs(i); 
Aref2(i,:)=[1 -tan(thAest2(i))]; 
bref2(i,1)=Ys(i)-tan(thAest2(i))*Xs(i); 
    end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%1)LOS-only localization  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Xest1 =A(1:j,:)\b(1:j,1) 
Rtest1=sqrt(Xest1(1)^2+Xest1(2)^2); 
Y1=A(1:j,:)*Xest1; 
kappa1=cond(A(1:j,:));  
theta1=asin(norm(b(1:j,1)-Y1)/norm(b(1:j,1))); 
eta1=norm(A(1:j,:))*norm(Xest1)/norm(Y1); 
  
Condbx1(run,j-2)=kappa1/(eta1*cos(theta1)); 
CondAx1(run,j-2)=kappa1+(kappa1^2*tan(theta1))/eta1; 
Yt_sdma1(run,j-2)=Xest1(1); 
Xt_sdma1(run,j-2)=Xest1(2); 
  
%Bias of the Target location 
biasYt_sdma1(run,j-2)=T(2)-Xest1(1); 
biasXt_sdma1(run,j-2)=T(1)-Xest1(2); 
biasRt_sdma1(run,j-2)=Rt-Rtest1; 
  
 %REFLECTOR DETERMINATION%  
 %REFLECTOR1 
Xestref1 =Aref1(1:j,:)\bref1(1:j,1); 
  
tan_thM1=(Xestref1(1)-Xest1(1))/(Xest1(2)-Xestref1(2)); 
tho_est1=((pi/2)-atan(tan_thM1)); 



 73

tho_est1*180/pi; 
YRo_est1=(Xest1(1)+Xestref1(1))/2-
tan(tho_est1)*((Xest1(2)+Xestref1(2))/2); 
 Xestref2 =Aref2\bref2; 
%REFLECTOR2 
tan_thM2=(Xestref2(1)-Xest1(1))/(Xest1(2)-Xestref2(2)); 
tho_est2=((pi/2)-atan(tan_thM2)); 
tho_est2*180/pi; 
YRo_est2=(Xest1(1)+Xestref2(1))/2-
tan(tho_est2)*((Xest1(2)+Xestref2(2))/2); 
  
  
  
XRsest1=(1/(1+tan(tho_est1)^2))*Xs(i)+(tan(tho_est1)/(1+tan(tho_est1)^2
))*(Ys(i)-YRo_est1); 
YRsest1=tan(tho_est1)*XRsest1+YRo_est1; 
Xsimest1=2*XRsest1-Xs(i); 
Ysimest1=2*YRsest1-Ys(i); 
  
XRsest2=(1/(1+tan(tho_est2)^2))*Xs(i)+(tan(tho_est2)/(1+tan(tho_est2)^2
))*(Ys(i)-YRo_est2); 
YRsest2=tan(tho_est2)*XRsest2+YRo_est2; 
Xsimest2=2*XRsest2-Xs(i); 
Ysimest2=2*YRsest2-Ys(i); 
  
%Matrix Formulation 
for i=1:j 
Ar(i,:)=[1 -tan(thLest(i))]; 
Ar(i+j,:)=[1 -tan(2*tho_est1-thAest1(i))]; 
Ar(i+2*j,:)=[1 -tan(2*tho_est2-thAest2(i))]; 
br(i,1)=Ys(i)-tan(thLest(i))*Xs(i); 
br(i+j,1)= Ysimest1-tan(2*tho_est1-thAest1(i))*Xsimest1; 
br(i+2*j,1)= Ysimest2-tan(2*tho_est2-thAest2(i))*Xsimest2; 
end 
  
%%%%%%%%%%% 
%%%%%%%%%%%    
%SCENARIO 1 
%%%%%%%%%%%% 
%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%2)Scenario 1:Centralized proposed localization(1 known reflector)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
A2=A(1:2*j,:); b2=b(1:2*j,:); 
Xest2=A2\b2 
 Y2=A2*Xest2; 
Rtest2=sqrt(Xest2(1)^2+Xest2(2)^2); 
Yt_sdma2(run,j-2)=Xest2(1); 
Xt_sdma2(run,j-2)=Xest2(2); 
  
kappa2=cond(A2);  
theta2=asin(norm(b2-Y2)/norm(b2)); 
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eta2=norm(A2)*norm(Xest2)/norm(Y2); 
Condbx2(run,j-2)=kappa2/(eta2*cos(theta2)); 
CondAx2(run,j-2)=kappa2+(kappa2^2*tan(theta2))/eta2; 
  
%Bias of the Target location 
biasYt_sdma2(run,j-2)=T(2)-Xest2(1); 
biasXt_sdma2(run,j-2)=T(1)-Xest2(2); 
biasRt_sdma2(run,j-2)=Rt-Rtest2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%3)Scenario 1:Distributed propossed localization (1 known reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:j 
A3=[A(i,:);A(i+j,:)];  
b3=[b(i);b(i+j)];   
Test3(:,i)=A3\b3; 
end 
Xest3=mean(Test3,2); 
Yt_sdma3(run,j-2)=Xest3(1); 
Xt_sdma3(run,j-2)=Xest3(2); 
Rtest3=sqrt(Xest3(1)^2+Xest3(2)^2); 
%Bias of the Target location 
biasYt_sdma3(run,j-2)=T(2)-Xest3(1); 
biasXt_sdma3(run,j-2)=T(1)-Xest3(2); 
biasRt_sdma3(run,j-2)=Rt-Rtest3; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%4)Scenario 1:Centralized proposed localization (1 unknown reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A4=Ar(1:2*j,:); 
b4=br(1:2*j,:); 
  
Xest4 =A4\b4; Y4=A4*Xest4; 
Rtest4=sqrt(Xest4(1)^2+Xest4(2)^2); 
Yt_sdma4(run,j-2)=Xest4(1); 
Xt_sdma4(run,j-2)=Xest4(2); 
  
  
%Bias of the Target location 
biasYt_sdma4(run,j-2)=T(2)-Xest4(1); 
biasXt_sdma4(run,j-2)=T(1)-Xest4(2); 
biasRt_sdma4(run,j-2)=Rt-Rtest4; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%5)Scenario 1:NLOS-only localization (1 known reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A5=A(j+1:2*j,:); 
b5=b(j+1:2*j,1); 
Xest5 =A5\b5; 
Rtest5=sqrt(Xest5(1)^2+Xest5(2)^2); 
Y5=A5*Xest5; 
kappa5=cond(A5);  
theta5=asin(norm(b5-Y5)/norm(b5)); 
eta5=norm(A5)*norm(Xest5)/norm(Y5); 
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Condbx5(run,j-2)=kappa5/(eta5*cos(theta5)); 
CondAx5(run,j-2)=kappa5+(kappa5^2*tan(theta5))/eta5; 
Yt_sdma5(run,j-2)=Xest5(1); 
Xt_sdma5(run,j-2)=Xest5(2); 
  
%Bias of the Target location 
biasYt_sdma5(run,j-2)=T(2)-Xest5(1); 
biasXt_sdma5(run,j-2)=T(1)-Xest5(2); 
biasRt_sdma5(run,j-2)=Rt-Rtest5; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%6)Scenario 1:Centrilized proposed localization (TLS, 1 reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n1 = size(A4,2); 
C = [A4 b4]; 
[U1 S1 V1] = svd(C,0); 
V11 = V1(1:n1,1+n1:end); 
V12 = V1(1+n1:end,1+n1:end); 
Test6 = -V11/V12; 
Rtest6=sqrt(Test6(1)^2+Test6(2)^2); 
  
Yt_sdma6(run,j-2)=Test6(1); 
Xt_sdma6(run,j-2)=Test6(2); 
  
%Bias of the Target location 
biasXt_sdma6(run,j-2)=T(2)-Test6(1); 
biasYt_sdma6(run,j-2)=T(1)-Test6(2); 
biasRt_sdma6(run,j-2)=Rt-Rtest6; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%7)Scenario2:Centralized proposed localization (2 known reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Xest7=A\b 
 Y7=A*Xest7; 
Rtest7=sqrt(Xest7(1)^2+Xest7(2)^2); 
Yt_sdma7(run,j-2)=Xest7(1); 
Xt_sdma7(run,j-2)=Xest7(2); 
  
kappa7=cond(A);  
theta7=asin(norm(b-Y7)/norm(b)); 
eta7=norm(A)*norm(Xest7)/norm(Y7); 
Condbx7(run,j-2)=kappa7/(eta7*cos(theta7)); 
CondAx7(run,j-2)=kappa7+(kappa7^2*tan(theta7))/eta7; 
  
%Bias of the Target location 
biasYt_sdma7(run,j-2)=T(2)-Xest7(1); 
biasXt_sdma7(run,j-2)=T(1)-Xest7(2); 
biasRt_sdma7(run,j-2)=Rt-Rtest7; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%8)Scenario 2:Centralized proposed localization (2 unknown reflector) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Xest8 =Ar\br; 
Rtest8=sqrt(Xest8(1)^2+Xest8(2)^2); 
Yt_sdma8(run,j-2)=Xest8(1); 
Xt_sdma8(run,j-2)=Xest8(2); 
  
  
%Bias of the Target location 
biasYt_sdma8(run,j-2)=T(2)-Xest8(1); 
biasXt_sdma8(run,j-2)=T(1)-Xest8(2); 
biasRt_sdma8(run,j-2)=Rt-Rtest8; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%9)Scenario 2:Distributed proposed localization (2 known reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:j 
A9=[A(i,:);A(i+j,:);A(i+2*j,:)];  
b9=[b(i);b(i+j);b(i+2*j)];   
Test9(:,i)=A9\b9; 
end 
Xest9=mean(Test9,2); 
Yt_sdma9(run,j-2)=Xest9(1); 
Xt_sdma9(run,j-2)=Xest9(2); 
Rtest9=sqrt(Xest9(1)^2+Xest9(2)^2); 
%Bias of the Target location 
biasYt_sdma9(run,j-2)=T(2)-Xest9(1); 
biasXt_sdma9(run,j-2)=T(1)-Xest9(2); 
biasRt_sdma9(run,j-2)=Rt-Rtest9; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%10)Scenario 2:NLOS-only (2 known reflector) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A10=A(j+1:3*j,:); 
b10=b(j+1:3*j,1); 
Xest10 =A10\b10; 
Rtest10=sqrt(Xest10(1)^2+Xest10(2)^2); 
Y10=A10*Xest10; 
kappa10=cond(A10);  
theta10=asin(norm(b10-Y10)/norm(b10)); 
eta10=norm(A10)*norm(Xest10)/norm(Y10); 
  
Condbx10(run,j-2)=kappa10/(eta10*cos(theta10)); 
CondAx10(run,j-2)=kappa10+(kappa10^2*tan(theta10))/eta10; 
Yt_sdma10(run,j-2)=Xest10(1); 
Xt_sdma10(run,j-2)=Xest10(2); 
  
%Bias of the Target location 
biasYt_sdma10(run,j-2)=T(2)-Xest10(1); 
biasXt_sdma10(run,j-2)=T(1)-Xest10(2); 
biasRt_sdma10(run,j-2)=Rt-Rtest10; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%11)LOS-only localization (fault angle) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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for i=1:j-1; 
A11(i+1,:)=[1 -tan(thLest(i+1))]; 
b11(i+1,:)=[1 -tan(thLest(i+1))]; 
end 
A11(1,:)=[1 -tan(thAest1(1))]; 
b11(1,:)=[1 -tan(thAest1(1))]; 
Xest11 =A11\b11; 
Rtest11=sqrt(Xest11(1)^2+Xest11(2)^2); 
Yt_sdma11(run,j-2)=Xest11(1); 
Xt_sdma11(run,j-2)=Xest11(2); 
  
%Bias of the Target location 
biasYt_sdma11(run,j-2)=T(2)-Xest11(1); 
biasXt_sdma11(run,j-2)=T(1)-Xest11(2); 
biasRt_sdma11(run,j-2)=Rt-Rtest11; 
  
end 
end 
  
%% ERROR ANALYSIS 
  
%1)Statistics for LOS-only localization   
bias_sdma1=[biasXt_sdma1' biasYt_sdma1' biasRt_sdma1'];     %Matrix of 
bias 
meanbiasRt_sdma1=mean(biasRt_sdma1);                        %Mean 
position error 
varbiasRt_sdma1=var(biasRt_sdma1);                          %Variance 
of position error 
rmsbiasRt_sdma1=sqrt(meanbiasRt_sdma1.^2+varbiasRt_sdma1);  %RMS 
position error 
  
meanCondbx1=mean(Condbx1) 
meanCondAx1=mean(CondAx1) 
  
%2)Statistics for Centralized proposed localization(1 known reflector)   
bias_sdma2=[biasXt_sdma2' biasYt_sdma2' biasRt_sdma2'];     %Matrix of 
bias 
meanbiasRt_sdma2=mean(biasRt_sdma2);                        %Mean 
position error 
varbiasRt_sdma2=var(biasRt_sdma2);                          %Variance 
of position error 
rmsbiasRt_sdma2=sqrt(meanbiasRt_sdma2.^2+varbiasRt_sdma2);  %RMS 
position error 
  
meanCondbx2=mean(Condbx2) 
meanCondAx2=mean(CondAx2) 
  
  
%3)Statistics for Distributed proposed localization(1 known reflector) 
bias_sdma3=[biasXt_sdma3' biasYt_sdma3' biasRt_sdma3'];     %Matrix of 
bias 
meanbiasRt_sdma3=mean(biasRt_sdma3);                        %Mean 
position error 
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varbiasRt_sdma3=var(biasRt_sdma3);                          %Variance 
of position error 
rmsbiasRt_sdma3=sqrt(meanbiasRt_sdma3.^2+varbiasRt_sdma3);  %RMS 
position error 
  
%4)Statistics for Centralized proposed localization(1 unknown 
reflector) 
bias_sdma4=[biasXt_sdma4' biasYt_sdma4' biasRt_sdma4'];     %Matrix of 
bias 
meanbiasRt_sdma4=mean(biasRt_sdma4);                        %Mean 
position error 
varbiasRt_sdma4=var(biasRt_sdma4);                          %Variance 
of position error 
rmsbiasRt_sdma4=sqrt(meanbiasRt_sdma4.^2+varbiasRt_sdma4);  %RMS 
position error 
  
%5)Statistics for NLOS-only localization (1 known reflector)  
bias_sdma5=[biasXt_sdma5' biasYt_sdma5' biasRt_sdma5'];     %Matrix of 
bias 
meanbiasRt_sdma5=mean(biasRt_sdma5);                        %Mean 
position error 
varbiasRt_sdma5=var(biasRt_sdma5);                          %Variance 
of position error 
rmsbiasRt_sdma5=sqrt(meanbiasRt_sdma5.^2+varbiasRt_sdma5);  %RMS 
position error 
  
meanCondbx5=mean(Condbx5) 
meanCondAx5=mean(CondAx5) 
  
%6)Statistics for Centrilized proposed localization (TLS, 1 reflector)  
bias_sdma6=[biasXt_sdma6' biasYt_sdma6' biasRt_sdma6'];     %Matrix of 
bias 
meanbiasRt_sdma6=mean(biasRt_sdma6);                        %Mean 
position error 
varbiasRt_sdma6=var(biasRt_sdma6);                          %Variance 
of position error 
rmsbiasRt_sdma6=sqrt(meanbiasRt_sdma6.^2+varbiasRt_sdma6);  %RMS 
position error 
  
%7)Statistics for Centralized proposed localization(2 known reflector) 
bias_sdma7=[biasXt_sdma7' biasYt_sdma7' biasRt_sdma7'];     %Matrix of 
bias 
meanbiasRt_sdma7=mean(biasRt_sdma7);                        %Mean 
position error 
varbiasRt_sdma7=var(biasRt_sdma7);                          %Variance 
of position error 
rmsbiasRt_sdma7=sqrt(meanbiasRt_sdma7.^2+varbiasRt_sdma7);  %RMS 
position error 
  
meanCondbx7=mean(Condbx7) 
meanCondAx7=mean(CondAx7) 
  
%8)Statistics for Centralized proposed localization(2 known reflector) 
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bias_sdma8=[biasXt_sdma8' biasYt_sdma8' biasRt_sdma8'];     %Matrix of 
bias 
meanbiasRt_sdma8=mean(biasRt_sdma8);                        %Mean 
position error 
varbiasRt_sdma8=var(biasRt_sdma8);                          %Variance 
of position error 
rmsbiasRt_sdma8=sqrt(meanbiasRt_sdma8.^2+varbiasRt_sdma8);  %RMS 
position error 
  
%9)Statistics for Centralized proposed localization(2 unknown 
reflector) 
bias_sdma9=[biasXt_sdma9' biasYt_sdma9' biasRt_sdma9'];     %Matrix of 
bias 
meanbiasRt_sdma9=mean(biasRt_sdma9);                        %Mean 
position error 
varbiasRt_sdma9=var(biasRt_sdma9);                          %Variance 
of position error 
rmsbiasRt_sdma9=sqrt(meanbiasRt_sdma9.^2+varbiasRt_sdma9);  %RMS 
position error 
  
%10)Statistics for NLOS-only localization (1 known reflector) 
bias_sdma10=[biasXt_sdma10' biasYt_sdma10' biasRt_sdma10'];  %Matrix of 
bias 
meanbiasRt_sdma10=mean(biasRt_sdma10);                       %Mean 
position error 
varbiasRt_sdma10=var(biasRt_sdma10);                         %Variance 
of position error 
rmsbiasRt_sdma10=sqrt(meanbiasRt_sdma10.^2+varbiasRt_sdma10);%RMS 
position error 
  
meanCondbx10=mean(Condbx10) 
meanCondAx10=mean(CondAx10) 
  
%11)Statistics for LOS-only localization (fault angle) 
bias_sdma11=[biasXt_sdma11' biasYt_sdma11' biasRt_sdma11'];  %Matrix of 
bias 
meanbiasRt_sdma11=mean(biasRt_sdma11);                       %Mean 
position error 
varbiasRt_sdma11=var(biasRt_sdma11);                         %Variance 
of position error 
rmsbiasRt_sdma11=sqrt(meanbiasRt_sdma11.^2+varbiasRt_sdma11);%RMS 
position error 
  
  
toc 
  
SN=3:7; 
  
figure(1) 
plot(SN,rmsbiasRt_sdma1,'b--^',SN,rmsbiasRt_sdma2,'r-*') 
xlabel('Number Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LOS-only localization','Proposed localization (known 
reflector)') 
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figure(2) 
plot(SN,rmsbiasRt_sdma2,'g--^',SN,rmsbiasRt_sdma3,'r-*') 
xlabel('Number of Arrays','Fontsize',12) 
ylabel('\gamma-RMS(meters)','Fontsize',12) 
legend('Centralized proposed localization','Distributed proposed 
localization ') 
  
figure(3) 
plot(SN,rmsbiasRt_sdma1,'b-^',SN,rmsbiasRt_sdma2,'g-
o',SN,rmsbiasRt_sdma4,'r-*') 
xlabel('Number of Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LOS-only localization','Proposed localization (known 
reflector)',... 
    'Proposed localization (unknown reflector)') 
  
figure(4) 
plot(SN,rmsbiasRt_sdma4,'r--^',SN,rmsbiasRt_sdma6,'r-*') 
xlabel('Number of Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LS proposed scheme(unknown reflector)','TLS proposed 
scheme(unknown reflector)') 
  
figure(5) 
plot(SN,rmsbiasRt_sdma1,'b--^',SN,rmsbiasRt_sdma2,'r-
*',SN,rmsbiasRt_sdma7,'r-*') 
xlabel('Number Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LOS-only localization','Proposed localization (1 known 
reflector)',... 
    'Proposed localization (2 known reflector)') 
  
figure(6) 
plot(SN,rmsbiasRt_sdma11,'b--^',SN,rmsbiasRt_sdma8,'r-
*',SN,rmsbiasRt_sdma4,'g--o') 
xlabel('Number of Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LOS-only localization (fault angle)','Proposed localization (1 
unknown reflector)',... 
    'Proposed localization (2 unknown reflector)') 
  
figure(7) 
plot(SN,rmsbiasRt_sdma5,'b--^',SN,rmsbiasRt_sdma10,'r-*') 
xlabel('Number Arrays','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('NLOS-only localization (1 reflector)','NLOS-only localization 
(2 reflector)') 
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This is the Matlab code used in this thesis to evaluate the performance of the 

proposed source localization scheme in the presence one unknown reflector using the 

sequential least squares. 

 
%MODEL WHICH APPLIES THE SEQUENTIAL LEAST SQUARE IN THE LOCALIZATION 
  
clear; clc; clf reset; 
  
Var=0.25*pi^2/180^2; 
f=3E8;                                        % freq of baseband 
modulation 
TB=1/(4*f);                                    % time bandwidth product 
= 4 
Nchips=64;                                    % Number of Chips / Time 
seq 
SPC = 16;                                     % Samples Per Chip 
                            
cp=3E8; 
lambda = cp/f;                                % c/f 
k = 2*pi/lambda;                              % wavenumber 
  
tend=SPC*Nchips;                              % time snapshot end 
t=[0:(tend-1)]*TB/(tend-1);                   % discritization of 
signal 
s=sin(2*pi*f*t); 
S=zeros(1,length(t));                         %incident signal 
S(1,:) =S(1,:)+exp(1j*(s)); 
  
%Signal Power 
P=10^-4; 
K=1.38*10^-23; 
Tk=400; 
B=3E4; 
SNR=10*log10(P/(K*Tk*B)) 
  
%% TARGET POSITION-REFLECTOR SIMULATION  
tic 
Xt=170; Yt=230;                                             % targets 
position 
stdev=0.25; 
T=[Xt Yt]; 
Rt=sqrt(T(1)^2+T(2)^2);    
tho1=10*pi/180; 
YRo1=400; 
c=input('give the number of clusters-receivers:')   
array_size=input('give the size of the array:')  
N=input('give the number of sensors/cluster:')  
nruns=input('give the number of Monte carlo estimates:') 
it=input('give the number of iterations') 
Xs=zeros(1,c);Ys=zeros(1,c); 
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for run=1:nruns;                  % Monte carlo simulation begin  from 
here 
    fprintf('run:%2.0f\n',run); 
   YRo1=YRo1+stdev*randn; 
%Array positions 
   for i=1:c; 
    Ys(i)=45*rand; 
    Xs(i)=45*rand;  
tan_thL=(Yt-Ys(i))/(Xt-Xs(i)); 
thL=atan(tan_thL);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Simulation of the reflector 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
XRs1=(1/(1+tan(tho1)^2))*Xs(i)+(tan(tho1)/(1+tan(tho1)^2))*(Ys(i)-
YRo1); 
YRs1=tan(tho1)*XRs1+YRo1; 
Xsim1=2*XRs1-Xs(i); 
Ysim1=2*YRs1-Ys(i); 
thA1=2*tho1+atan((Ysim1-T(2))/(T(1)-Xsim1)); %DOA  REF actual #1 
XR11=50; YR11=tan(tho1)*XR11+YRo1; 
XR12=200; YR12=tan(tho1)*XR12+YRo1; 
th11=atan((YR11-Ys(i))/(XR11-Xs(i)))+5*pi/180; 
th12=atan((YR12-Ys(i))/(XR12-Xs(i)))-3*pi/180; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Signal strength simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Array Gain 
GA=10*log10(N)+2;               %Assume dipole antenna elements 
  
%Free space path loss 
dL=sqrt((Xt-Xs(i))^2+(Yt-Ys(i))^2); 
LSL=-20*log10(lambda)+20*log10(dL)+21.98; 
dA1=sqrt((Xt-Xsim1)^2+(Yt-Ysim1)^2); 
LSA1=-20*log10(lambda)+20*log10(dA1)+21.98; 
  
%Reflection loss 
thT1=asin(sin(pi/2-thA1)/sqrt(5)); 
Href1=(cos(pi/2-thA1)-sqrt(5)*cos(thT1))/(cos(pi/2-
thA1)+sqrt(5)*cos(thT1)); 
Lref1=20*log10(abs(Href1)); 
  
%Received SNR 
SNRL=SNR-LSL+GA;  
SNRA1=SNR-LSA1+Lref1+GA; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Received Signal- DOA Estimation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:it; 
[B1,B2,B] =resignal(thL,thA1,N,array_size,k); 
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XL=B1*S; %Received signal  
XL=awgn(XL,SNRL,'measured'); 
XA1=B2*S; %Received signal  
XA1=awgn(XA1,SNRA1,'measured'); 
X=XA1+XL; 
thESTsdma=doa_sdma(X,B,N); 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%Assosiation 
%%%%%%%%%%%%%%%%%%%%%%%% 
REF1=find(thESTsdma<th11 & thESTsdma>th12); 
LOS=find(thESTsdma<th12); 
thLest(i,j)=thESTsdma(LOS); 
thAest1(i,j)=thESTsdma(REF1); 
end 
end 
%%%%%%%%%%%%%%%%%%% 
%Matrix Formulation for LOS and REF 
%%%%%%%%%%%%%%%%%%% 
for j=1:it; 
for i=1:c; 
Alos(i+c*j-c,:)=[1 -tan(thLest(i,j))]; 
blos(i+c*j-c,1)=Ys(i)-tan(thLest(i,j))*Xs(i); 
Aref(i+c*j-c,:)=[1 -tan(thAest1(i,j))]; 
bref(i+c*j-c,1)=Ys(i)-tan(thAest1(i,j))*Xs(i); 
end 
end 
Xestlos(:,1)=Alos(1:c,:)\blos(1:c,:); 
Xestref(:,1)=Aref(1:c,:)\bref(1:c,:);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Reflector estimation using sequential least square 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for j=1:c*(it-1) 
    C(1:j+c-1,1:j+c-1)=(1/Var)*eye(j+c-1); 
    Sigmalos(:,:)=inv(Alos(1:j+c-1,:)'*C(1:j+c-1,1:j+c-1)*Alos(1:j+c-
1,:)); 
    Klos(:,j)=(Sigmalos(:,:)*Alos(j+c,:)')/(Var+Alos(j+c,:)* 
Sigmalos(:,:)*Alos(j+c,:)'); 
Xestlos(:,j+1)=Xestlos(:,j)+Klos(:,j)*(blos(j+c,1)-
Alos(j+c,:)*Xestlos(:,j)); 
  
Sigmaref(:,:)=inv(Aref(1:j+c-1,:)'*C(1:j+c-1,1:j+c-1)*Aref(1:j+c-1,:)); 
    Kref(:,j)=(Sigmaref(:,:)*Aref(j+c,:)')/(Var+Aref(j+c,:)* 
Sigmaref(:,:)*Aref(j+c,:)'); 
Xestref(:,j+1)=Xestref(:,j)+Kref(:,j)*(bref(j+c,1)-
Aref(j+c,:)*Xestref(:,j)); 
tan_thM=(Xestref(1,j)-Xestlos(1,j))/(Xestlos(2,j)-Xestref(2,j)); 
tho_est(j)=((pi/2)-atan(tan_thM)); 
YRo_est(j)=(Xestlos(1,j)+Xestref(1,j))/2-
tan(tho_est(j))*((Xestlos(2,j)+Xestref(2,j))/2); 
for i=1:c; 
XRsest(j,i)=(1/(1+tan(tho_est(j))^2))*Xs(i)+(tan(tho_est(j))/(1+tan(tho
_est(j))^2))*(Ys(i)-YRo_est(j)); 
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YRsest(j,i)=tan(tho_est(j))*XRsest(j)+YRo_est(j); 
Xsimest(j,i)=2*XRsest(j,i)-Xs(i); 
Ysimest(j,i)=2*YRsest(j,i)-Ys(i); 
Ar(i,:)=[1 -tan(thLest(i))]; 
Ar(i+c,:)=[1 -tan(2*tho_est(j)-thAest1(i))]; 
br(i,1)=Ys(i)-tan(thLest(i))*Xs(i); 
br(i+c,1)= Ysimest(j,i)-tan(2*tho_est(j)-thAest1(i))*Xsimest(j,i); 
end 
Xest2=Ar\br 
Rtest2=sqrt(Xest2(1)^2+Xest2(2)^2); 
biasRt_sdma2(run,j)=Rt-Rtest2; 
end 
  
%Los localization 
Xest1=Xestlos(:,1) 
Rtest1=sqrt(Xest1(1)^2+Xest1(2)^2); 
biasRt_sdma1(run)=Rt-Rtest1; 
end 
  
meanbiasRt_sdma1=mean(biasRt_sdma1);                        %Mean 
position error 
varbiasRt_sdma1=var(biasRt_sdma1);                          %Variance 
of position error 
rmsbiasRt_sdma1=sqrt(meanbiasRt_sdma1.^2+varbiasRt_sdma1);  %RMS 
position error 
  
meanbiasRt_sdma2=mean(biasRt_sdma2);                        %Mean 
position error 
varbiasRt_sdma2=var(biasRt_sdma2);                          %Variance 
of position error 
rmsbiasRt_sdma2=sqrt(meanbiasRt_sdma2.^2+varbiasRt_sdma2);  %RMS 
position error 
  
rmsbiasRt_sdma1=rmsbiasRt_sdma1*ones(1,8) 
SN=1:8; 
figure(1) 
plot(SN,rmsbiasRt_sdma1,'b--^',SN,rmsbiasRt_sdma2,'r-*') 
xlabel('Number of iterations','Fontsize',12) 
ylabel('\gamma,RMS(meters)','Fontsize',12) 
legend('LOS-only localization','LS proposed (known reflector)') 
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This is the function used to determine the received signal in the array 

 
function [B1,B2,B] =resignal(thLOS,thREF1,N,array_size,k ) 
  
  
Ntheta=91; Nphi=3601;                      % Set up angle matrices 
theta = linspace(0,pi/2,Ntheta);  
phi   = linspace(-pi,pi,Nphi);  
DTheta= theta(2)-theta(1); DPhi = phi(2)-phi(1); 
[Phi,Theta] = meshgrid(phi,theta);  
CT=cos(Theta); ST=sin(Theta); CP=cos(Phi); SP=sin(Phi); 
Rx=ST.*CP; Ry=ST.*SP; Rz=CT;                % unit radial vector 
components 
  
  
                                % in wavelengths (lambda) square grid 
min_spacing =array_size/50 ;    % 1/10th wavelength 
sepn_min = 0;                   % initialize prior to 1st test 
xp = array_size * rand(1,N); 
yp = array_size * rand(1,N); 
  
%------------ Stats of Random Array --------------- 
  
while (sepn_min< min_spacing)                % min spacing = .1 
wavelength 
  
    rp = [xp;yp]'; 
    sepn = pdist(rp);                        % dist between all 
elements in Random Array 
    sepn_min = min(sepn);                    % find minimum separation 
    zsepn = squareform(sepn);                % convert linear sepn 
array to square 
    [Rmin Cmin] = find(zsepn==sepn_min,1, 'first'); %returns index  
    if (sepn_min< min_spacing)               % then Move one of them 
        xp(Rmin)=array_size * rand; 
        yp(Rmin)=array_size * rand; 
    end  
 
m=find(theta==pi/2);                         % want row for xy plane 
Rxm = Rx(m,:);                               % 1xNphi vector 
Rym = Ry(m,:); 
  
% Calculate the actual received signal for each angle using the N 
element 
% receiver and sum all N signals. 
   for n=1:N 
      B11(1,n) = exp(j*(k*(cos(thLOS)*xp(n)+sin(thLOS)*yp(n)))); 
     B22(1,n) =exp(j*(k*( cos(thREF1)*xp(n)+sin(thREF1)*yp(n)))); 
   end 
  
for n=1:3601; 
   an(n)=(n/10-0.1)-180; 
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   th(n)=an(n)*pi/180; 
   for i=1:N 
       B(i,n)=exp(1j*(k*(xp(i)*Rxm(n)+ yp(i)*Rym(n)))); 
   end 
end 
B1=B11'; 
B2=B22'; 
 
 
This is the function used to estimate the DOA of the incident signal using the SDMA 
receiver. 
 
function thESTsdma=doa_sdma(X,B,N) 
  
  %% SDMA RECEIVER 
  
Nchips=64;  
SPC = 16;                               % Samples Per Chip 
H = hadamard(Nchips);                   % use Walsh Sequence 
codes=[]; 
for i=1:N 
    codes(i,:)=H(i+1,:);                % don't want 1st row 
end 
% spread codes by SPC 
codes = repmat( codes,SPC,1);           % repeat by spread factor 
codes = reshape(codes,N,SPC*Nchips);    % move like chips together 
codes = codes*pi/2;                     % pi/2 since inside exponential 
codes=codes'; 
r=codes*X; 
  
v=codes*B; 
R=conj(v)'*r; 
R=sum(R,2); 
maxR=max(abs(R)); 
Psdma=abs(R)/maxR; 
Psdma=[zeros(900,1); Psdma(902:2702,:); zeros(900,1)]; 
  
%DOA SDMA 
Nphi=3601; 
phi   = linspace(-pi,pi,Nphi); 
for i=1:Nphi 
if Psdma(i)>0.5; 
    Psdma1(i)=Psdma(i); 
else 
    Psdma1(i)=0; 
end 
end 
  
POSsdma = imregionalmax(Psdma1);              % MATLAB rtn that finds 
local maxima->BW array "1"s 
PEAKsdma = find(POSsdma);                     % index pointers to local 
Maxima 
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[bs,is]=sort(Psdma(find(POSsdma)),'descend'); % sort by highest peak-
>lowest 
ThESTsdma= PEAKsdma(is);                      % index to peaks 
ThESTsdma= 180*phi(ThESTsdma)/pi;             % Angle where peaks occur 
thESTsdma=ThESTsdma(1,1:2); 
thESTsdma=thESTsdma*pi/180;  
  
  
  
This is the function used to estimate the DOA of the incident signal using the MUSIC 
algorithm. 
 
doa_music.m 
 
function thESTmusic=doa_music(X,A,N) 
Nchips=64;                         % Number of Chips / Time seq 
SPC = 16;                          % Samples Per Chip 
tend=SPC*Nchips;  
Nphi=3601; 
phi   = linspace(-pi,pi,Nphi); 
Rxx=X*X'/tend;                     %autocorrelation matrix of signal   
[V,Dia]=eig(Rxx);                  %eigenvalues of autocorrelation 
matrix 
[Y,Index]=sort(diag(Dia));         %eigenvalues in descending order  
EN=V(:,Index(1:N-2));              %noise subspace matrix 
for i=1:3601; 
MU(i)=abs(A(:,i)'*EN*EN'*A(:,i)); 
end 
Pmu=1./MU;                         %music pseudospectrum 
maxPmu=max(Pmu); 
Pmu=[Pmu(1802:3601) Pmu(1:1801)]; 
Pmusic=Pmu/maxPmu; 
Pmusic=[zeros(1,900) Pmusic(901:2701) zeros(1,900)]; 
POSmusic = imregionalmax(Pmusic);               %MATLAB rtn that finds 
local maxima->BW array "1"s 
PEAKmusic = find(POSmusic);                     % index pointers to 
local Maxima 
[bs,is]=sort(Pmusic(find(POSmusic)),'descend'); % sort by highest peak-
>lowest 
ThESTmusic= PEAKmusic(is);                      % index to peaks 
ThESTmusic= 180*phi(ThESTmusic)/pi ;            % Angle where peaks 
occur 
thESTmusic=ThESTmusic(1,1:3); 
thESTmusic=thESTmusic*pi/180; 
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